cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A092499 Chebyshev polynomials S(n-1,21) with Diophantine property.

Original entry on oeis.org

0, 1, 21, 440, 9219, 193159, 4047120, 84796361, 1776676461, 37225409320, 779956919259, 16341869895119, 342399310878240, 7174043658547921, 150312517518628101, 3149388824232642200, 65986852791366858099
Offset: 0

Views

Author

Rainer Rosenthal, Apr 05 2004

Keywords

Comments

Sequence R_21: Starts with 0,1,21 and satisfies A*C=B^2-1 for successive A,B,C.
The natural numbers a(n)=n satisfy the recurrence a(n-1)*a(n+1)=a(n)^2-1. Let R_r denote the sequence starting with 0,1,r and with this recurrence. We see that R_2 = "the natural numbers" and we find R_3 = A001906. These R_r form a "family" of sequences, which coincides with the m-family (r=m-2, n -> n+1) provided by Wolfdieter Lang (see A078368). This sequence R_21 is strongly related to A041833, which gives the denominators in the continued fraction of sqrt(437).
All positive integer solutions of Pell equation b(n)^2 - 437*a(n)^2 = +4 together with b(n)=A097777(n), n>=0.
For n>=2, a(n) equals the permanent of the (n-1)X(n-1) tridiagonal matrix with 21's along the main diagonal, and i's along the superdiagonal and the subdiagonal (i is the imaginary unit). - John M. Campbell, Jul 08 2011
For n>=1, a(n) equals the number of 01-avoiding words of length n-1 on alphabet {0,1,...,20}. - Milan Janjic, Jan 25 2015

Examples

			a(3)=440 because a(1)*440 = a(2)^2-1.
		

Crossrefs

Cf. R_3=A001906, R_4=A001353, R_5=A004254, R_6=A001109, R_7=A004187, R_8=A001090, R_9=A018913, R_10=A004189, R_11=A004190, R_12=A004191, R_13=A078362, R_14=A007655, R_15=A078364, R_16=A077412, R_17=A078366, R_18=A049660, R_19=A078368, R_20=A075843, R_21=this, sequence, R_22=A077421. See also A041219 and A041917.

Programs

  • Mathematica
    LinearRecurrence[{21,-1},{0,1},30] (* Harvey P. Dale, Apr 23 2015 *)
  • Sage
    [lucas_number1(n,21,1) for n in range(0,20)] # Zerinvary Lajos, Jun 25 2008

Formula

a(0)=0, a(1)=1, a(2)=21 and a(n-1)*a(n+1) = a(n)^2-1
a(n) = S(n-1, 21)=U(n-1, 21/2) with S(n, x)=U(n, x/2) Chebyshev's polynomials of the 2nd kind, A049310. S(-1, x)= 0 = U(-1, x).
a(n) = S(2*n-1, sqrt(23))/sqrt(23), n>=1.
a(n) = 21*a(n-1)-a(n-2), n >= 1; a(0)=0, a(1)=1.
a(n) = (ap^n-am^n)/(ap-am) with ap := (21+sqrt(437))/2 and am := (21-sqrt(437))/2.
G.f.: x/(1-21*x+x^2).
a(n+1) = Sum_{k, 0<=k<=n} A101950(n,k)*20^k. - Philippe Deléham, Feb 10 2012
Product {n >= 1} (1 + 1/a(n)) = 1/19*(19 + sqrt(437)). - Peter Bala, Dec 23 2012
Product {n >= 2} (1 - 1/a(n)) = 1/42*(19 + sqrt(437)). - Peter Bala, Dec 23 2012

Extensions

Extension, Chebyshev and Pell comments from Wolfdieter Lang, Aug 31 2004
Corrected by T. D. Noe, Nov 07 2006

A098056 Triangle read by rows: T(n,k) = number of peakless Motzkin paths of length n containing k subwords of the type uh^ju, dH^jd, or dh^ju for some j>0, where u=(1,1), d=(1,-1) and h=(1,0) (can be easily expressed using RNA secondary structure terminology).

Original entry on oeis.org

1, 1, 1, 2, 4, 8, 15, 2, 27, 9, 1, 48, 29, 5, 84, 80, 21, 147, 198, 74, 4, 257, 463, 230, 27, 1, 451, 1033, 667, 125, 7, 796, 2235, 1811, 488, 43, 1413, 4727, 4694, 1676, 219, 6, 2526, 9828, 11700, 5317, 946, 54, 1, 4544, 20192, 28252, 15813, 3696, 326, 9, 8226, 41100
Offset: 0

Views

Author

Emeric Deutsch, Sep 11 2004

Keywords

Comments

Row sums are the RNA secondary structure numbers (A004148).
T(n,0) = A098057(n).
Sum(k*T(n,k),k>=0) = A187259(n).

Examples

			Triangle starts:
  1;
  1;
  1;
  2;
  4;
  8;
  15,2;
  27,9,1;
  48,29,5;
  84.80,21;
  147,198,74,7;
  ...
It seems that the number r(n) of terms in row n>=3 is given by r(n)=n/2-1 if n=2 (mod 4) and r(n)=2*round(n/4)-1 otherwise (here round(m) is the nearest integer to m).
T(7,1)=9 because we have h(uhu)hdd, (uhhu)hdd, (uhu)hhdd, (uhu)hddh, uh(dhu)hd and the reflections of the first four paths in a vertical axis; here u=(1,1), h=(1,0), d=(1,-1) and the pertinent subwords are shown between parentheses.
		

Crossrefs

Formula

G.f.=G=G(t, z) satisfies G = 1 + zG + z^2*[H + 2tzH/(1-z)+t^2*z^2*H/(1-z)^2+ z/(1-z)][G-(1-t)zH/(1-z)^2], where H=(1-z)^2*G-1+z.
The 4-variate g.f. G(t,s,v,z) of peakless Motzkin paths, where t, s, v mark subwords of the types uH^ju, dH^jd, dH^ju, respectively, and z marks length, satisfies the equation
G = 1+zG+z^2*[H + (t+s)zH/(1-z)+tsz^2*H/(1-z)^2+z/(1-z)][G-(1-v)zH/(1-z)^2],
where H = (1-z)[(1-z)G-1]. As special cases we get the current sequence A098056 and the sequences A097777 and A098083.

A187257 Number of UH^jU's for some j>0, where U=(1,1) and H=(1,1), in all peakless Motzkin paths of length n (can be easily expressed using RNA secondary structure terminology).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 5, 17, 52, 150, 417, 1135, 3047, 8103, 21409, 56303, 147569, 385808, 1006775, 2623477, 6828941, 17761182, 46165507, 119937807, 311485907, 808731993, 2099358057, 5448906369, 14141429587, 36699034884, 95237147804, 247149109444, 641388458961
Offset: 0

Views

Author

Emeric Deutsch, May 05 2011

Keywords

Comments

a(n)=Sum(k*A097777(n,k), k>=0).

Examples

			a(6)=1 because among the 17 (=A004148(6)) peakless Motzkin paths of length 6 only UHUHDD contains subwords of type UH^jU for some j>0 (here D=(1,-1)).
		

Crossrefs

Formula

G.f.=z^5*g^3*(g-1)/[(1-z)(1-z^2*g^2)], where g=1+zg+z^2*g(g-1)=A004148.
Showing 1-3 of 3 results.