cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A274676 Numbers k such that 7*10^k + 13 is prime.

Original entry on oeis.org

1, 3, 9, 12, 18, 19, 36, 37, 49, 67, 337, 893, 1924, 8044, 11610, 13560, 18777, 35376, 53601, 56022, 66488, 89801, 190210
Offset: 1

Views

Author

Vincenzo Librandi, Jul 03 2016

Keywords

Comments

a(15) > 10000. - Felix Fröhlich, Jul 03 2016

Examples

			3 is in this sequence because 7*10^3 + 13 = 7013 is prime.
4 is not in the sequence because 7*10^4 + 13 = 70013 = 53 * 1321.
Initial terms and associated primes:
a(1) =  1: 83;
a(2) =  3: 7013;
a(3) =  9: 7000000013;
a(4) = 12: 7000000000013, etc.
		

Crossrefs

Cf. numbers k such that 7*10^k + m is prime: A056804 (m=1), A097970 (m=3), A097954 (m=9), this sequence (m=13), A274677 (m=19), A274678 (m=27), A111021 (m=31), A274679 (m=33), A274700 (m=37), A274692 (m=43), A270974 (m=57).

Programs

  • Magma
    [n: n in [1..800] | IsPrime(7*10^n+13)];
    
  • Maple
    select(t -> isprime(7*10^t+13), [$1..2000]); # Robert Israel, Jul 03 2016
  • Mathematica
    Select[Range[0, 3000], PrimeQ[7 * 10^# + 13] &]
  • PARI
    is(n) = ispseudoprime(7*10^n+13) \\ Felix Fröhlich, Jul 03 2016
    
  • PARI
    lista(nn) = for(n=1, nn, if(ispseudoprime(7*10^n+13), print1(n, ", "))); \\ Altug Alkan, Jul 03 2016

Extensions

a(15) from Michael S. Branicky, Jan 22 2023
a(16)-a(17) from Michael S. Branicky, Apr 10 2023
a(18)-a(23) from Kamada data by Tyler Busby, Apr 15 2024

A101130 Indices of primes in sequence defined by A(0) = 79, A(k) = 10*A(k-1) - 81 for k > 0.

Original entry on oeis.org

0, 1, 3, 5, 10, 11, 12, 34, 45, 56, 127, 155, 262, 352, 395, 428, 782, 981, 1057, 1562, 1694, 1815, 1936, 4235, 4430, 6857, 9897, 13144, 16645, 20890, 63350, 105295, 113692, 121143, 163779, 234914, 284750
Offset: 1

Views

Author

Klaus Brockhaus and Walter Oberschelp (oberschelp(AT)informatik.rwth-aachen.de), Dec 03 2004

Keywords

Comments

Numbers k such that 70*10^k + 9 is prime.
Numbers k such that digit 7 followed by k >= 0 occurrences of digit 0 followed by digit 9 is prime.
Numbers corresponding to terms <= 981 are certified primes.
a(38) > 3*10^5. - Robert Price, Jul 10 2023

Examples

			70009 is prime, hence 3 is a term.
		

References

  • Klaus Brockhaus and Walter Oberschelp, Zahlenfolgen mit homogenem Ziffernkern, MNU 59/8 (2006), pp. 462-467.

Crossrefs

Programs

  • Magma
    [n: n in [0..400] |IsPrime(70*10^n + 9)]; // Vincenzo Librandi, Sep 06 2015
  • Mathematica
    Select[Range[0, 300], PrimeQ[70*10^# + 9] &] (* Robert Price, Sep 05 2015 *)
  • PARI
    a=79;for(n=0,1500,if(isprime(a),print1(n,","));a=10*a-81)
    
  • PARI
    for(n=0,1500,if(isprime(70*10^n+9),print1(n,",")))
    

Formula

a(n) = A097954(n) - 1.

Extensions

More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 01 2008
a(28)-a(31) from Kamada data by Ray Chandler, Apr 29 2015
a(32)-a(35) from Robert Price, Sep 05 2015
a(36)-a(37) from Robert Price, Jul 10 2023
Showing 1-2 of 2 results.