cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A097743 Numbers of the form 3*2^(p - 1) - 1 where p is prime.

Original entry on oeis.org

5, 11, 47, 191, 3071, 12287, 196607, 786431, 12582911, 805306367, 3221225471, 206158430207, 3298534883327, 13194139533311, 211106232532991, 13510798882111487, 864691128455135231, 3458764513820540927
Offset: 1

Views

Author

Parthasarathy Nambi, Sep 21 2004

Keywords

Examples

			p=2, 2^(2-1) + (2^2 - 1) = 5;
p=3, 2^(3-1) + (2^3 - 1) = 11.
		

Crossrefs

Programs

  • Mathematica
    Table[3*2^(Prime[n] - 1) - 1, {n, 18}] (* Robert G. Wilson v, Sep 24 2004 *)
  • PARI
    a(n) = 3*2^(prime(n) - 1) - 1; \\ Michel Marcus, Nov 30 2017

Formula

a(n) = A001348(n) + A061286(n). - Iain Fox, Dec 08 2017

Extensions

Edited and extended by Robert G. Wilson v, Sep 24 2004

A358527 Position of p in the factorization (without multiplicity) of 2^(p-1)-1, where p is the n-th odd prime.

Original entry on oeis.org

1, 2, 2, 2, 4, 3, 3, 2, 3, 4, 6, 6, 3, 2, 3, 2, 8, 4, 5, 8, 3, 2, 5, 6, 6, 3, 2, 8, 6, 6, 4, 4, 4, 3, 5, 7, 5, 2, 3, 2, 14, 4, 7, 7, 8, 9, 3, 2, 5, 5, 4, 12, 4, 4, 2, 3, 8, 7, 12, 3, 3, 6, 4, 10, 3, 9, 13, 2, 7, 7, 2, 3, 5, 8, 2, 3, 13, 10, 10, 4, 19, 4, 13, 3
Offset: 1

Views

Author

G. L. Honaker, Jr., Nov 20 2022

Keywords

Examples

			a(19) = 5 because the 19th odd prime is 71 and 71 is the 5th largest distinct prime factor of 2^(71-1)-1 = 1180591620717411303423 = 3 * 11 * 31 * 43 * 71 * 127 * 281 * 86171 * 122921.
		

Crossrefs

Programs

  • Mathematica
    Array[FirstPosition[FactorInteger[2^(# - 1) - 1], #][[1]] &[Prime[# + 1]] &, 50] (* Michael De Vlieger, Nov 27 2022 *)
  • PARI
    a(n) = my(p=prime(n+1), v=factor(2^(p-1)-1)[,1]); vecsearch(v, p); \\ Michel Marcus, Nov 28 2022

Extensions

More terms from Amiram Eldar, Nov 23 2022

A358699 a(n) is the largest prime factor of 2^(prime(n) - 1) - 1.

Original entry on oeis.org

3, 5, 7, 31, 13, 257, 73, 683, 127, 331, 109, 61681, 5419, 2796203, 8191, 3033169, 1321, 599479, 122921, 38737, 22366891, 8831418697, 2931542417, 22253377, 268501, 131071, 28059810762433, 279073, 54410972897, 77158673929, 145295143558111, 2879347902817, 10052678938039
Offset: 2

Views

Author

Hugo Pfoertner, Nov 27 2022

Keywords

Crossrefs

Subsequence of A005420 and of A274906.

Programs

  • PARI
    forprime (p=3, 140, my(f=factor(2^(p-1)-1)); print1(f[#f[,1],1],", "))
    
  • Python
    from sympy import primefactors, sieve
    def A358699(n): return primefactors(2**(sieve[n]-1)-1)[-1] # Karl-Heinz Hofmann, Nov 28 2022

Formula

a(n) = A006530(A098102(n)). - Michel Marcus, Nov 28 2022
a(n) = A005420(A006093(n)). - Amiram Eldar, Dec 01 2022

A279882 a(n) = 2^(prime(n) + 1) - 1.

Original entry on oeis.org

7, 15, 63, 255, 4095, 16383, 262143, 1048575, 16777215, 1073741823, 4294967295, 274877906943, 4398046511103, 17592186044415, 281474976710655, 18014398509481983, 1152921504606846975, 4611686018427387903, 295147905179352825855, 4722366482869645213695
Offset: 1

Views

Author

Jaroslav Krizek, Dec 21 2016

Keywords

Comments

Numbers whose binary representation is 1 repeated (prime(n)+1) times.
The only prime term is 7.

Examples

			For n=3; a(3) = 2^(prime(3) + 1) - 1 = 2^(5 + 1) - 1 = 2^6 - 1 = 63.
		

Crossrefs

Cf. A101304 (2^(prime(n)+1)+1), A098102 (2^(prime(n)-1)-1), A278741 (2^(prime(n)-1)+1).

Programs

Formula

a(n) = A101304(n) - 2.
a(n) = A000225(A008864(n)). - Felix Fröhlich, Dec 21 2016

A359395 Least odd prime p in position n in the prime factorization of M(p) = 2^(p - 1) - 1.

Original entry on oeis.org

3, 5, 17, 13, 71, 37, 157, 61, 211, 313, 1289, 241, 337, 181, 577, 601, 541, 1381, 421, 1201, 1009, 1621, 1873, 3433, 4561, 1801, 3301, 2161, 3061, 5281, 3361, 2521, 7393, 6481, 4201, 4621, 8737, 9181, 6301, 19501, 7561, 16633, 12241, 26881, 15601, 9241, 21001, 14281, 12601, 53551
Offset: 1

Views

Author

Jean-Marc Rebert, Dec 31 2022

Keywords

Examples

			M(5) = 15 = 3*5 and 5 is in second position in the prime factorization of M(5), and no lesser odd prime satisfies this, so a(2) = 5.
M(17) = 65535 = 3*5*17*257 and 17 is in third position in the prime factorization of M(17), and no lesser odd prime satisfies this, so a(3) = 17.
		

Crossrefs

Programs

Showing 1-5 of 5 results.