cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A071068 Number of ways to write n as a sum of two unordered squarefree numbers.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 2, 3, 2, 2, 2, 4, 3, 3, 3, 5, 4, 4, 3, 6, 4, 5, 4, 7, 5, 5, 5, 7, 5, 5, 5, 8, 6, 7, 6, 11, 7, 7, 7, 11, 8, 8, 9, 13, 10, 8, 8, 13, 10, 8, 7, 14, 10, 10, 7, 13, 10, 11, 9, 15, 11, 11, 11, 15, 11, 11, 11, 18, 12, 13, 11, 21, 13, 14, 13, 20, 14, 13, 14, 20, 16, 13, 13, 22, 15
Offset: 1

Views

Author

Benoit Cloitre, May 26 2002

Keywords

Comments

The natural density of the squarefree numbers is 6/Pi^2, so An < a(n) < Bn for all large enough n with A < 6/Pi^2 - 1/2 and B > 3/Pi^2. The Schnirelmann density of the squarefree numbers is 53/88 > 1/2, and so a(n) > 0 for all n > 1 (in fact, a(n+1) >= 9n/88). It follows from Theoreme 3 bis. in Cohen, Dress, & El Marraki along with finite checking up to 16089908 that 0.10792n < a(n) < 0.303967n for n > 36. (The lower bound holds for n > 1.) - Charles R Greathouse IV, Feb 02 2016

Examples

			12=1+11=2+10=5+7=6+6 hence a(12)=4.
		

Crossrefs

Programs

Formula

a(n) = Sum_{k=1..floor(n/2)} mu(k)^2 * mu(n-k)^2. - Wesley Ivan Hurt, May 20 2013
a(n) = (A262991(n) - A294101(n))/2. - Wesley Ivan Hurt, Jul 16 2025

A098236 Number of ways to write n as the sum of two positive distinct squarefree numbers.

Original entry on oeis.org

0, 0, 1, 1, 1, 1, 2, 3, 2, 1, 2, 3, 3, 2, 3, 5, 4, 4, 3, 5, 4, 4, 4, 7, 5, 4, 5, 6, 5, 4, 5, 8, 6, 6, 6, 11, 7, 6, 7, 11, 8, 7, 9, 12, 10, 7, 8, 13, 10, 8, 7, 13, 10, 10, 7, 13, 10, 10, 9, 14, 11, 10, 11, 15, 11, 10, 11, 17, 12, 12, 11, 21, 13, 13, 13, 19, 14, 12, 14, 20, 16, 12, 13, 21
Offset: 1

Views

Author

Ralf Stephan, Aug 31 2004

Keywords

Comments

Number of distinct rectangles with squarefree length and width such that L + W = n, W < L. - Wesley Ivan Hurt, Oct 29 2017

Crossrefs

Programs

  • Maple
    with(numtheory): A098236:=n->add(mobius(i)^2*mobius(n-i)^2, i=1..floor(n/2)-((n+1) mod 2)): seq(A098236(n), n=1..150); # Wesley Ivan Hurt, Oct 29 2017
  • Mathematica
    Table[Sum[MoebiusMu[i]^2*MoebiusMu[n - i]^2, {i, Floor[(n-1)/2]}], {n, 80}] (* Wesley Ivan Hurt, Oct 26 2017 *)
  • PARI
    a(n) = sum(i=1, n\2-(n+1)%2, moebius(i)^2*moebius(n-i)^2); \\ Michel Marcus, Oct 27 2017

Formula

a(n) = Sum_{k=1..floor((n-1)/2)} mu(k)^2 * mu(n-k)^2. - Wesley Ivan Hurt, Oct 26 2017

A280210 Expansion of (Sum_{k>=1} mu(k)^2*x^k)^3, where mu(k) is the Moebius function (A008683).

Original entry on oeis.org

0, 0, 0, 1, 3, 6, 7, 9, 12, 19, 21, 21, 21, 30, 36, 37, 36, 48, 58, 63, 57, 70, 78, 87, 78, 96, 105, 114, 105, 123, 133, 138, 126, 148, 162, 174, 156, 195, 207, 220, 192, 234, 250, 261, 237, 280, 312, 318, 282, 330, 363, 370, 315, 375, 405, 432, 366, 421, 453, 483, 417, 468, 507, 532, 474, 537, 568, 591, 519, 601, 630, 666, 570
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 29 2016

Keywords

Comments

Number of ordered ways of writing n as sum of three squarefree numbers (A005117).

Examples

			a(4) = 3 because we have [2, 1, 1], [1, 2, 1] and [1, 1, 2].
		

Crossrefs

Programs

  • Mathematica
    nmax = 72; CoefficientList[Series[(Sum[MoebiusMu[k]^2 x^k, {k, 1, nmax}])^3, {x, 0, nmax}], x]

Formula

G.f.: (Sum_{k>=1} mu(k)^2*x^k)^3.

A341064 Number of ways to write n as an ordered sum of 4 squarefree numbers.

Original entry on oeis.org

1, 4, 10, 16, 23, 32, 50, 68, 83, 92, 116, 148, 178, 192, 224, 276, 335, 360, 400, 460, 547, 580, 634, 704, 821, 868, 938, 1024, 1162, 1212, 1288, 1392, 1572, 1628, 1742, 1876, 2123, 2172, 2308, 2460, 2761, 2820, 2964, 3176, 3550, 3628, 3778, 4028, 4481, 4528, 4686, 4932, 5513, 5564
Offset: 4

Views

Author

Ilya Gutkovskiy, Feb 04 2021

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, t) option remember;
          `if`(n=0, `if`(t=0, 1, 0), `if`(t<1, 0, add(
          `if`(numtheory[issqrfree](j), b(n-j, t-1), 0), j=1..n)))
        end:
    a:= n-> b(n, 4):
    seq(a(n), n=4..57);  # Alois P. Heinz, Feb 04 2021
  • Mathematica
    nmax = 57; CoefficientList[Series[Sum[MoebiusMu[k]^2 x^k, {k, 1, nmax}]^4, {x, 0, nmax}], x] // Drop[#, 4] &

Formula

G.f.: (Sum_{k>=1} mu(k)^2 * x^k)^4.

A341065 Number of ways to write n as an ordered sum of 5 squarefree numbers.

Original entry on oeis.org

1, 5, 15, 30, 50, 76, 120, 180, 250, 315, 401, 520, 670, 805, 955, 1160, 1445, 1715, 1980, 2290, 2741, 3180, 3605, 4040, 4690, 5341, 5985, 6600, 7490, 8380, 9251, 10060, 11240, 12415, 13595, 14670, 16295, 17850, 19425, 20780, 22905, 24905, 26895, 28600, 31335, 33966, 36485, 38620
Offset: 5

Views

Author

Ilya Gutkovskiy, Feb 04 2021

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, t) option remember;
          `if`(n=0, `if`(t=0, 1, 0), `if`(t<1, 0, add(
          `if`(numtheory[issqrfree](j), b(n-j, t-1), 0), j=1..n)))
        end:
    a:= n-> b(n, 5):
    seq(a(n), n=5..52);  # Alois P. Heinz, Feb 04 2021
  • Mathematica
    nmax = 52; CoefficientList[Series[Sum[MoebiusMu[k]^2 x^k, {k, 1, nmax}]^5, {x, 0, nmax}], x] // Drop[#, 5] &

Formula

G.f.: (Sum_{k>=1} mu(k)^2 * x^k)^5.

A341066 Number of ways to write n as an ordered sum of 6 squarefree numbers.

Original entry on oeis.org

1, 6, 21, 50, 96, 162, 267, 426, 645, 902, 1218, 1632, 2187, 2826, 3543, 4402, 5547, 6906, 8397, 10032, 12108, 14578, 17298, 20112, 23517, 27534, 32034, 36592, 41892, 48018, 54886, 61758, 69549, 78408, 88365, 98274, 109478, 122058, 136230, 150114, 165759, 183114, 202630, 221484
Offset: 6

Views

Author

Ilya Gutkovskiy, Feb 04 2021

Keywords

Examples

			G.f.: (Sum_{k>=1} mu(k)^2 * x^k)^6.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, t) option remember;
          `if`(n=0, `if`(t=0, 1, 0), `if`(t<1, 0, add(
          `if`(numtheory[issqrfree](j), b(n-j, t-1), 0), j=1..n)))
        end:
    a:= n-> b(n, 6):
    seq(a(n), n=6..49);  # Alois P. Heinz, Feb 04 2021
  • Mathematica
    nmax = 49; CoefficientList[Series[Sum[MoebiusMu[k]^2 x^k, {k, 1, nmax}]^6, {x, 0, nmax}], x] // Drop[#, 6] &

A341067 Number of ways to write n as an ordered sum of 7 squarefree numbers.

Original entry on oeis.org

1, 7, 28, 77, 168, 315, 553, 932, 1505, 2282, 3297, 4634, 6447, 8771, 11607, 15029, 19390, 24885, 31500, 39137, 48335, 59584, 73003, 88109, 105525, 126112, 150472, 177632, 208160, 243194, 284102, 329357, 379379, 435477, 500108, 571124, 648998, 735112, 833483, 940765, 1057679
Offset: 7

Views

Author

Ilya Gutkovskiy, Feb 04 2021

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, t) option remember;
          `if`(n=0, `if`(t=0, 1, 0), `if`(t<1, 0, add(
          `if`(numtheory[issqrfree](j), b(n-j, t-1), 0), j=1..n)))
        end:
    a:= n-> b(n, 7):
    seq(a(n), n=7..47);  # Alois P. Heinz, Feb 04 2021
  • Mathematica
    nmax = 47; CoefficientList[Series[Sum[MoebiusMu[k]^2 x^k, {k, 1, nmax}]^7, {x, 0, nmax}], x] // Drop[#, 7] &

Formula

G.f.: (Sum_{k>=1} mu(k)^2 * x^k)^7.

A341068 Number of ways to write n as an ordered sum of 8 squarefree numbers.

Original entry on oeis.org

1, 8, 36, 112, 274, 568, 1072, 1912, 3263, 5280, 8128, 12048, 17474, 24824, 34428, 46600, 62163, 82160, 107452, 138392, 176116, 222560, 279756, 348168, 428954, 524848, 639976, 775448, 932376, 1113808, 1326748, 1573656, 1855767, 2175728, 2544048, 2965280, 3441568, 3974744, 4580060
Offset: 8

Views

Author

Ilya Gutkovskiy, Feb 04 2021

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, t) option remember;
          `if`(n=0, `if`(t=0, 1, 0), `if`(t<1, 0, add(
          `if`(numtheory[issqrfree](j), b(n-j, t-1), 0), j=1..n)))
        end:
    a:= n-> b(n, 8):
    seq(a(n), n=8..46);  # Alois P. Heinz, Feb 04 2021
  • Mathematica
    nmax = 46; CoefficientList[Series[Sum[MoebiusMu[k]^2 x^k, {k, 1, nmax}]^8, {x, 0, nmax}], x] // Drop[#, 8] &

Formula

G.f.: (Sum_{k>=1} mu(k)^2 * x^k)^8.

A341069 Number of ways to write n as an ordered sum of 9 squarefree numbers.

Original entry on oeis.org

1, 9, 45, 156, 423, 963, 1959, 3708, 6669, 11410, 18594, 29052, 44046, 65196, 94284, 133104, 184248, 251406, 338995, 450936, 591885, 768657, 990567, 1265832, 1602273, 2010294, 2506572, 3107136, 3825675, 4676643, 5686347, 6882912, 8290431, 9928305, 11834289, 14052816, 16624846
Offset: 9

Views

Author

Ilya Gutkovskiy, Feb 04 2021

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, t) option remember;
          `if`(n=0, `if`(t=0, 1, 0), `if`(t<1, 0, add(
          `if`(numtheory[issqrfree](j), b(n-j, t-1), 0), j=1..n)))
        end:
    a:= n-> b(n, 9):
    seq(a(n), n=9..45);  # Alois P. Heinz, Feb 04 2021
  • Mathematica
    nmax = 45; CoefficientList[Series[Sum[MoebiusMu[k]^2 x^k, {k, 1, nmax}]^9, {x, 0, nmax}], x] // Drop[#, 9] &

Formula

G.f.: (Sum_{k>=1} mu(k)^2 * x^k)^9.

A341070 Number of ways to write n as an ordered sum of 10 squarefree numbers.

Original entry on oeis.org

1, 10, 55, 210, 625, 1552, 3400, 6840, 12960, 23330, 40028, 65740, 104230, 160670, 241640, 354772, 509620, 718980, 999645, 1370720, 1853903, 2476250, 3274110, 4289810, 5568820, 7162184, 9138045, 11579180, 14574755, 18215900, 22619016, 27929990, 34311845, 41921710, 50946945
Offset: 10

Views

Author

Ilya Gutkovskiy, Feb 04 2021

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, t) option remember;
          `if`(n=0, `if`(t=0, 1, 0), `if`(t<1, 0, add(
          `if`(numtheory[issqrfree](j), b(n-j, t-1), 0), j=1..n)))
        end:
    a:= n-> b(n, 10):
    seq(a(n), n=10..44);  # Alois P. Heinz, Feb 04 2021
  • Mathematica
    nmax = 44; CoefficientList[Series[Sum[MoebiusMu[k]^2 x^k, {k, 1, nmax}]^10, {x, 0, nmax}], x] // Drop[#, 10] &

Formula

G.f.: (Sum_{k>=1} mu(k)^2 * x^k)^10.
Showing 1-10 of 17 results. Next