cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A098317 Decimal expansion of phi^3 = 2 + sqrt(5).

Original entry on oeis.org

4, 2, 3, 6, 0, 6, 7, 9, 7, 7, 4, 9, 9, 7, 8, 9, 6, 9, 6, 4, 0, 9, 1, 7, 3, 6, 6, 8, 7, 3, 1, 2, 7, 6, 2, 3, 5, 4, 4, 0, 6, 1, 8, 3, 5, 9, 6, 1, 1, 5, 2, 5, 7, 2, 4, 2, 7, 0, 8, 9, 7, 2, 4, 5, 4, 1, 0, 5, 2, 0, 9, 2, 5, 6, 3, 7, 8, 0, 4, 8, 9, 9, 4, 1, 4, 4, 1, 4, 4, 0, 8, 3, 7, 8, 7, 8, 2, 2, 7, 4, 9, 6
Offset: 1

Views

Author

Eric W. Weisstein, Sep 02 2004

Keywords

Comments

This sequence is also the decimal expansion of ((1+sqrt(5))/2)^3. - Mohammad K. Azarian, Apr 14 2008
This is the length/width ratio of a 4-extension rectangle; see A188640 for definitions. - Clark Kimberling, Apr 10 2011
Its continued fraction is [4, 4, ...] (see A010709). - Robert G. Wilson v, Apr 10 2011

Examples

			4.23606797749978969640917366873127623544061835961152572427...
		

References

  • Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, pages 138-139.
  • Alexey Stakhov, The mathematics of harmony: from Euclid to contemporary mathematics and computer science, World Scientific, Singapore, 2009, p. 657.

Crossrefs

Programs

Formula

2 plus the constant in A002163. - R. J. Mathar, Sep 02 2008
Equals 3 + 4*sin(Pi/10) = 1 + 4*cos(Pi/5) = 1 + 4*sin(3*Pi/10) = 3 + 4*cos(2*Pi/5) = 1 + csc(Pi/10). - Arkadiusz Wesolowski, Mar 11 2012
Equals lim_{n -> infinity} F(n+3)/F(n) = lim_{n -> infinity} (1 + 2*F(n+1)/F(n)) = 2 + sqrt(5), with F(n) = A000045(n). - Arkadiusz Wesolowski, Mar 11 2012
Equals exp(arcsinh(2)), since arcsinh(x) = log(x+sqrt(x^2+1)). - Stanislav Sykora, Nov 01 2013
Equals Sum_{n>=1} n/phi^n = phi/(phi-1)^2 = phi^3. - Richard R. Forberg, Jun 29 2014
Equals 1 + 2*phi, with phi = A001622, an integer in the quadratic number field Q(sqrt(5)). - Wolfdieter Lang, Dec 10 2022
c^n = A001076(n-1) + c * A001076(n); where c = 2 + sqrt(5). - Gary W. Adamson, Oct 09 2023
Equals lim_{n -> infinity} = S(n, 2*(-1 + 2*phi))/S(n-1, 2*(-1 + 2*phi)), with the S-Chebyshev polynomials (see A049310). See also the above limit formula with Fibonacci numbers. - Wolfdieter Lang, Nov 15 2023

Extensions

Title expanded to include observation from Mohammad K. Azarian by Charles R Greathouse IV, Mar 11 2012