A098317 Decimal expansion of phi^3 = 2 + sqrt(5).
4, 2, 3, 6, 0, 6, 7, 9, 7, 7, 4, 9, 9, 7, 8, 9, 6, 9, 6, 4, 0, 9, 1, 7, 3, 6, 6, 8, 7, 3, 1, 2, 7, 6, 2, 3, 5, 4, 4, 0, 6, 1, 8, 3, 5, 9, 6, 1, 1, 5, 2, 5, 7, 2, 4, 2, 7, 0, 8, 9, 7, 2, 4, 5, 4, 1, 0, 5, 2, 0, 9, 2, 5, 6, 3, 7, 8, 0, 4, 8, 9, 9, 4, 1, 4, 4, 1, 4, 4, 0, 8, 3, 7, 8, 7, 8, 2, 2, 7, 4, 9, 6
Offset: 1
Examples
4.23606797749978969640917366873127623544061835961152572427...
References
- Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, pages 138-139.
- Alexey Stakhov, The mathematics of harmony: from Euclid to contemporary mathematics and computer science, World Scientific, Singapore, 2009, p. 657.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
- Wikipedia, Metallic mean
- Index entries for algebraic numbers, degree 2
Programs
-
Magma
SetDefaultRealField(RealField(100)); 2+Sqrt(5); // G. C. Greubel, Jun 30 2019
-
Mathematica
RealDigits[N[2+Sqrt[5],200]][[1]] (* Vladimir Joseph Stephan Orlovsky, Feb 21 2011 *)
-
PARI
sqrt(5)+2 \\ Charles R Greathouse IV, Mar 11 2012
-
Sage
numerical_approx(2+sqrt(5), digits=100) # G. C. Greubel, Jun 30 2019
Formula
2 plus the constant in A002163. - R. J. Mathar, Sep 02 2008
Equals 3 + 4*sin(Pi/10) = 1 + 4*cos(Pi/5) = 1 + 4*sin(3*Pi/10) = 3 + 4*cos(2*Pi/5) = 1 + csc(Pi/10). - Arkadiusz Wesolowski, Mar 11 2012
Equals lim_{n -> infinity} F(n+3)/F(n) = lim_{n -> infinity} (1 + 2*F(n+1)/F(n)) = 2 + sqrt(5), with F(n) = A000045(n). - Arkadiusz Wesolowski, Mar 11 2012
Equals exp(arcsinh(2)), since arcsinh(x) = log(x+sqrt(x^2+1)). - Stanislav Sykora, Nov 01 2013
Equals Sum_{n>=1} n/phi^n = phi/(phi-1)^2 = phi^3. - Richard R. Forberg, Jun 29 2014
Equals 1 + 2*phi, with phi = A001622, an integer in the quadratic number field Q(sqrt(5)). - Wolfdieter Lang, Dec 10 2022
Equals lim_{n -> infinity} = S(n, 2*(-1 + 2*phi))/S(n-1, 2*(-1 + 2*phi)), with the S-Chebyshev polynomials (see A049310). See also the above limit formula with Fibonacci numbers. - Wolfdieter Lang, Nov 15 2023
Extensions
Title expanded to include observation from Mohammad K. Azarian by Charles R Greathouse IV, Mar 11 2012
Comments