A098531 Sum of fifth powers of first n Fibonacci numbers.
0, 1, 2, 34, 277, 3402, 36170, 407463, 4491564, 49926988, 553211363, 6137270812, 68054635036, 754774491429, 8370420537086, 92830050637086, 1029498223070793, 11417322172518550, 126619992693837974, 1404237451180502875, 15573231068749231000
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Index entries for linear recurrences with constant coefficients, signature (9,32,-100,20,48,-7,-1).
Crossrefs
Programs
-
Magma
[(&+[Fibonacci(k)^5:k in [0..n]]): n in [0..30]]; // G. C. Greubel, Jan 17 2018
-
Mathematica
Accumulate[Fibonacci[Range[0,20]]^5] (* Harvey P. Dale, Jan 14 2011 *) CoefficientList[Series[x*(1-7*x-16*x^2+7*x^3+x^4)/((1-x)*(1+4*x-x^2)*(1-x-x^2)*(1-11*x-x^2)), {x, 0, 40}], x] (* Vincenzo Librandi, Oct 13 2012 *)
-
PARI
a(n)=sum(i=0,n,fibonacci(i)^5)
Formula
a(n) = -7/22 + 2*F(n+2)/5 + (F(5*(n+1)) + F(5*n))/(5*55) - (-1)^n*(F(3*(n+1)) - F(3*n))/(2*10), where F=A000045. One may use F(5*(n+1)) + F(5*n) = F(5*n+1) + 4*F(5*n+2) (due to the Binet-de Moivre formula).
G.f.: x*(1-7*x-16*x^2+7*x^3+x^4)/((1-x)*(1+4*x-x^2)*(1-x-x^2)*(1-11*x-x^2)). - Bruno Berselli, Oct 12 2012
Extensions
Formula corrected, with the author's consent, by Wolfdieter Lang, Oct 12 2012
Comments