cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A098597 Numerator of Catalan(n)/2^(2n+1). Also, numerators of (2n-1)!!/(n+1)!. Odd part of the n-th Catalan number.

Original entry on oeis.org

1, 1, 1, 5, 7, 21, 33, 429, 715, 2431, 4199, 29393, 52003, 185725, 334305, 9694845, 17678835, 64822395, 119409675, 883631595, 1641030105, 6116566755, 11435320455, 171529806825, 322476036831, 1215486600363, 2295919134019, 17383387729001, 32968493968795, 125280277081421
Offset: 0

Views

Author

Michael Somos, Sep 15 2004

Keywords

Comments

Also numerators of g.f. c(x/2) = (1-sqrt(1-2x))/x where c(x) = g.f. of A000108. - Paul Barry, Sep 04 2007
Also numerator of x(n)=Sum(x(k)*x(n-k-1):0<=kA086117(n). - Reinhard Zumkeller, Feb 06 2008
Also numerator of (1/Pi)*int(x^n*sqrt((1-x)/x), x=0..1). - Groux Roland, Mar 17 2011
The negative of this sequence appears in the A-sequence of the Riordan triangle A084930 as numerators 4, -2, -seq(a(n-1), n >= 2). The denominators look like 1, seq(A120777(n-1), n >= 1). - Wolfdieter Lang, Aug 04 2014
The series of a(n)/A046161(n+1) is absolutely convergent to 1. - Ralf Steiner, Feb 09 2017

Examples

			1/(1 + sqrt(1-x)) = 1/2 + 1/8*x + 1/16*x^2 + 5/128*x^3 + 7/256*x^4 + ...
		

Crossrefs

Cf. Equals A000265(A000108(n)).
Essentially the absolute values of A002596. Cf. A000108, A001795.

Programs

  • Magma
    [Numerator(Catalan(n)/2^(2*n+1)):n in [0..30]]; // Vincenzo Librandi, Jan 14 2016
  • Maple
    a:= n-> abs(numer(binomial(1/2, n+1))): seq(a(n), n=0..50); # Alois P. Heinz, Apr 10 2009
  • Mathematica
    Table[Numerator[CatalanNumber[n]/2^(2n+1)],{n,0,30}] (* Harvey P. Dale, Jul 27 2011 *)
    A098597[n_] := With[{c = CatalanNumber[n]}, c / 2^IntegerExponent[c, 2]];
    Table[A098597[n], {n, 0, 29}]  (* Peter Luschny, Apr 16 2024 *)
  • PARI
    {a(n) = if( n < 0, 0, numerator(polcoeff(1 / (1 + sqrt(1 - x + x * O(x^n))), n)))};
    

Formula

Numerators of g.f.: 1/(1 + sqrt(1-x)).
a(n) = A000108(n) / 2^A048881(n).

Extensions

Edited by Ralf Stephan, Dec 28 2004