A098597 Numerator of Catalan(n)/2^(2n+1). Also, numerators of (2n-1)!!/(n+1)!. Odd part of the n-th Catalan number.
1, 1, 1, 5, 7, 21, 33, 429, 715, 2431, 4199, 29393, 52003, 185725, 334305, 9694845, 17678835, 64822395, 119409675, 883631595, 1641030105, 6116566755, 11435320455, 171529806825, 322476036831, 1215486600363, 2295919134019, 17383387729001, 32968493968795, 125280277081421
Offset: 0
Examples
1/(1 + sqrt(1-x)) = 1/2 + 1/8*x + 1/16*x^2 + 5/128*x^3 + 7/256*x^4 + ...
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..500
- Isabel Cação, Helmuth R. Malonek, Maria Irene Falcão, Graça Tomaz, Combinatorial Identities Associated with a Multidimensional Polynomial Sequence, J. Int. Seq., Vol. 21 (2018), Article 18.7.4.
- T. Copeland, Addendum to Elliptic Lie Triad
Crossrefs
Programs
-
Magma
[Numerator(Catalan(n)/2^(2*n+1)):n in [0..30]]; // Vincenzo Librandi, Jan 14 2016
-
Maple
a:= n-> abs(numer(binomial(1/2, n+1))): seq(a(n), n=0..50); # Alois P. Heinz, Apr 10 2009
-
Mathematica
Table[Numerator[CatalanNumber[n]/2^(2n+1)],{n,0,30}] (* Harvey P. Dale, Jul 27 2011 *) A098597[n_] := With[{c = CatalanNumber[n]}, c / 2^IntegerExponent[c, 2]]; Table[A098597[n], {n, 0, 29}] (* Peter Luschny, Apr 16 2024 *)
-
PARI
{a(n) = if( n < 0, 0, numerator(polcoeff(1 / (1 + sqrt(1 - x + x * O(x^n))), n)))};
Extensions
Edited by Ralf Stephan, Dec 28 2004
Comments