cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A099157 a(n) = 4^(n-1)*U(n-1, 3/2) where U is the Chebyshev polynomial of the second kind.

Original entry on oeis.org

0, 1, 12, 128, 1344, 14080, 147456, 1544192, 16171008, 169345024, 1773404160, 18571329536, 194481487872, 2036636581888, 21327935176704, 223349036810240, 2338941478895616, 24493713157783552, 256501494231072768
Offset: 0

Views

Author

Paul Barry, Oct 01 2004

Keywords

Crossrefs

Cf. A099140.

Programs

  • Magma
    [n le 2 select n-1 else 12*Self(n-1) -16*Self(n-2): n in [1..30]]; // G. C. Greubel, Jul 20 2023
  • Mathematica
    M= {{0,1}, {-16,12}}; v[0] = {0,1}; v[n_]:= v[n]= M.v[n-1];
    Table[v[n][[1]], {n,0,50}] (* Roger L. Bagula, Aug 15 2006 *)
    LinearRecurrence[{12,-16},{0,1},20] (* Harvey P. Dale, Sep 27 2015 *)
  • PARI
    a(n) = 4^(n-1)*polchebyshev(n-1, 2, 3/2); \\ Michel Marcus, Jun 10 2018
    
  • Sage
    [lucas_number1(n,12,16) for n in range(0, 19)] # Zerinvary Lajos, Apr 27 2009
    

Formula

G.f.: x/(1-12*x+16*x^2).
E.g.f.: exp(6*x) * sinh(2*sqrt(5)*x)/sqrt(5).
a(n) = 12*a(n-1) - 16*a(n-2).
a(n) = sqrt(5)/20 * ( (sqrt(5)+1)^(2*n) - (sqrt(5)-1)^(2*n) ).
a(n) = Sum_{k=0..n} binomial(2*n, 2*k+1) * 5^k / 2.
a(n) = 2^(2*n-1)*sinh(2*n*arccsch(2))/sqrt(5). - Federico Provvedi, Feb 02 2021

Extensions

Name edited by Michel Marcus, Jun 10 2018