cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A099425 Expansion of (1+x^2)/(1-2*x-x^2).

Original entry on oeis.org

1, 2, 6, 14, 34, 82, 198, 478, 1154, 2786, 6726, 16238, 39202, 94642, 228486, 551614, 1331714, 3215042, 7761798, 18738638, 45239074, 109216786, 263672646, 636562078, 1536796802, 3710155682, 8957108166, 21624372014, 52205852194, 126036076402, 304278004998
Offset: 0

Views

Author

Paul Barry, Oct 15 2004

Keywords

Comments

Binomial transform of A094024(n+1).
a(n) is the number of matchings of the corona C'(n) of the cycle graph C(n) and the complete graph K(1); in other words, C'(n) is the graph constructed from C(n) to which for each vertex v a new vertex v' and the edge vv' is added. Example: a(3)=14 because in the graph with vertex set {A,B,C,a,b,c} and edge set {AB,AC,BC,Aa,Bb,Cc} we have the following 14 matchings: the empty set, the six singletons containing one of the edges, {Aa,BC}, {Bb,AC}, {Cc,AB}, {Aa,Bb}, {Aa,Cc}, {Bb,Cc} and {Aa,Bb,Cc}. Row sums of A102413. - Emeric Deutsch, Jan 07 2005
Apart from first term, same as A002203. - Peter Shor, May 12 2005
Equals the INVERT transform of integers with repeats. Example: a(4) = 34 = (1, 1, 2, 6, 14) dot (5, 3, 3, 1, 1) = (5 + 3 + 6 + 6 + 14) = 34.

Crossrefs

Cf. A014176 (silver mean).

Programs

  • Haskell
    a099425 = sum . a102413_row  -- Reinhard Zumkeller, Apr 15 2014
  • Maple
    a:= n-> (<<0|1>, <1|2>>^n. <<2, 2>>)[1, 1]-0^n:
    seq(a(n), n=0..30);  # Alois P. Heinz, Jan 26 2018
  • Mathematica
    CoefficientList[Series[(1+x^2)/(1-2x-x^2),{x,0,30}],x] (* or *) LinearRecurrence[{2,1},{1,2,6},40] (* Harvey P. Dale, Mar 23 2020 *)

Formula

a(n) = (1+sqrt(2))^n + (1-sqrt(2))^n - 0^n see silver mean (A014176).
a(n) = Sum_{k=0..n} A000129(n+1-k)*C(1, k/2)*(1+(-1)^k)/2.
a(n) = 2*A001333(n) - 0^n.
a(n) = round((1+sqrt(2))^n). - Bruno Berselli, Feb 04 2013
G.f.: G(0) - 1, where G(k) = 1 + 1/(1 - x*(2*k-1)/(x*(2*k+1) - 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jul 30 2013
a(n) = A000129(n+1) + A000129(n-1). - Vladimir Kruchinin, Apr 19 2024