cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A050935 a(n) = a(n-1) - a(n-3) with a(1)=0, a(2)=0, a(3)=1.

Original entry on oeis.org

0, 0, 1, 1, 1, 0, -1, -2, -2, -1, 1, 3, 4, 3, 0, -4, -7, -7, -3, 4, 11, 14, 10, -1, -15, -25, -24, -9, 16, 40, 49, 33, -7, -56, -89, -82, -26, 63, 145, 171, 108, -37, -208, -316, -279, -71, 245, 524, 595, 350, -174, -769, -1119, -945, -176, 943, 1888, 2064, 1121, -767, -2831, -3952
Offset: 1

Views

Author

Richard J. Palmaccio (palmacr(AT)pinecrest.edu), Dec 31 1999

Keywords

Comments

The Ze3 sums, see A180662, of triangle A108299 equal the terms of this sequence without the two leading zeros. - Johannes W. Meijer, Aug 14 2011

References

  • R. Palmaccio, "Average Temperatures Modeled with Complex Numbers", Mathematics and Informatics Quarterly, pp. 9-17 of Vol. 3, No. 1, March 1993.

Crossrefs

When run backwards this gives a signed version of A000931.
Cf. A099529.
Apart from signs, essentially the same as A078013.
Cf. A203400 (partial sums).

Programs

  • Haskell
    a050935 n = a050935_list !! (n-1)
    a050935_list = 0 : 0 : 1 : zipWith (-) (drop 2 a050935_list) a050935_list
    -- Reinhard Zumkeller, Jan 01 2012
    
  • Maple
    A050935 := proc(n) option remember; if n <= 1 then 0 elif n = 2 then 1 else A050935(n-1)-A050935(n-3); fi; end: seq(A050935(n), n=0..61);
  • Mathematica
    LinearRecurrence[{1,0,-1},{0,0,1},70] (* Harvey P. Dale, Jan 30 2014 *)
  • PARI
    a(n)=([0,1,0; 0,0,1; -1,0,1]^(n-1)*[0;0;1])[1,1] \\ Charles R Greathouse IV, Feb 06 2017

Formula

From Paul Barry, Oct 20 2004: (Start)
G.f.: x^2/(1-x+x^3).
a(n+2) = Sum_{k=0..floor(n/3)} binomial(n-2*k, k)*(-1)^k. (End)
G.f.: Q(0)*x^2/2, where Q(k) = 1 + 1/(1 - x*(12*k-1 + x^2)/( x*(12*k+5 + x^2 ) - 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Sep 12 2013

Extensions

Offset adjusted by Reinhard Zumkeller, Jan 01 2012

A099531 Expansion of (1+x)^3/((1+x)^3+x^4).

Original entry on oeis.org

1, 0, 0, 0, -1, 3, -6, 10, -14, 15, -7, -20, 80, -188, 351, -549, 702, -622, -42, 1839, -5471, 11560, -20064, 29144, -33329, 21059, 27730, -142182, 355626, -689121, 1114937, -1490892, 1461360, -337220, -2996465, 10030587, -22226506, 39921442, -60118930, 72788383, -55703295, -31057776
Offset: 0

Views

Author

Paul Barry, Oct 20 2004

Keywords

Comments

Binomial transform is A099530.

Crossrefs

Cf. A099529.

Programs

  • Mathematica
    CoefficientList[Series[(1+x)^3/((1+x)^3+x^4),{x,0,50}],x] (* or *) LinearRecurrence[{-3,-3,-1,-1},{1,0,0,0},50] (* Harvey P. Dale, Feb 21 2016 *)

Formula

a(n)=-3a(n-1)-3a(n-2)-a(n-3)-a(n-4); a(n)=sum{j=0..n, sum{k=0..floor(j/4), C(n, j)(-1)^(n-j)C(j-3k, k)(-1)^k}}.

A020713 Pisot sequences E(5,9), P(5,9).

Original entry on oeis.org

5, 9, 16, 28, 49, 86, 151, 265, 465, 816, 1432, 2513, 4410, 7739, 13581, 23833, 41824, 73396, 128801, 226030, 396655, 696081, 1221537, 2143648, 3761840, 6601569, 11584946, 20330163, 35676949, 62608681, 109870576, 192809420, 338356945, 593775046, 1042002567
Offset: 0

Views

Author

Keywords

Crossrefs

This is a subsequence of A005314.
See A008776 for definitions of Pisot sequences.
Cf. A099529.

Programs

  • Magma
    Iv:=[5, 9]; [n le 2 select Iv[n] else Ceiling(Self(n-1)^2/Self(n-2)-1/2): n in [1..40]]; // Bruno Berselli, Feb 04 2016
    
  • Mathematica
    RecurrenceTable[{a[0] == 5, a[1] == 9, a[n] == Ceiling[a[n - 1]^2/a[n - 2]-1/2]}, a, {n, 0, 40}] (* Bruno Berselli, Feb 04 2016 *)
    LinearRecurrence[{2,-1,1},{5,9,16},40] (* Harvey P. Dale, Aug 03 2021 *)
  • PARI
    lista(nn) = {print1(x = 5, ", ", y = 9, ", "); for (n=1, nn, z = ceil(y^2/x -1/2); print1(z, ", "); x = y; y = z;);} \\ Michel Marcus, Feb 04 2016

Formula

a(n) = 2*a(n-1) - a(n-2) + a(n-3) (holds at least up to n = 1000 but is not known to hold in general).
Empirical g.f.: (5-x+3*x^2) / (1-2*x+x^2-x^3). - Colin Barker, Jun 05 2016
Theorem: E(5,9) satisfies a(n) = 2 a(n - 1) - a(n - 2) + a(n - 3) for n>=3. Proved using the PtoRv program of Ekhad-Sloane-Zeilberger, and implies the above conjectures. - N. J. A. Sloane, Sep 09 2016
a(n) = (-1)^n * A099529(n+6). - Jinyuan Wang, Mar 10 2020

A334293 First quadrisection of Padovan sequence.

Original entry on oeis.org

1, 0, 2, 5, 16, 49, 151, 465, 1432, 4410, 13581, 41824, 128801, 396655, 1221537, 3761840, 11584946, 35676949, 109870576, 338356945, 1042002567, 3208946545, 9882257736, 30433357674, 93722435101, 288627200960, 888855064897, 2737314167775, 8429820731201, 25960439030624
Offset: 0

Views

Author

Oboifeng Dira, Apr 21 2020

Keywords

Examples

			For n=3, a(3) = 2*a(2) + 3*a(1) + a(0) = 2*2 + 3*0 + 1 = 5.
		

Crossrefs

Quadrisection of A000931.
Bisection (even part) of A099529.

Programs

  • PARI
    Vec((1 - 2*x - x^2) / (1 - 2*x - 3*x^2 - x^3) + O(x^30)) \\ Colin Barker, Apr 27 2020

Formula

a(n) = A000931(4n).
a(n) = A099529(2n).
a(n) = Sum_{k=0..n} binomial(2*n-k-1, 2*k-1).
a(n) = 2*a(n-1)+3*a(n-2)+a(n-3), a(0)=1, a(1)=0, a(2)=2 for n>=3.
G.f.: (1 - 2*x - x^2) / (1 - 2*x - 3*x^2 - x^3). - Colin Barker, Apr 27 2020

A052625 E.g.f. (1-x)^2/(1-2x+x^2-x^3).

Original entry on oeis.org

1, 0, 0, 6, 48, 360, 3600, 45360, 645120, 10160640, 177811200, 3432844800, 72329241600, 1650160512000, 40537905408000, 1067062284288000, 29961435119616000, 893842506805248000, 28234468042260480000
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Programs

  • Maple
    spec := [S,{S=Sequence(Prod(Z,Z,Z,Sequence(Z),Sequence(Z)))},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    With[{nn=20},CoefficientList[Series[(1-x)^2/(1-2x+x^2-x^3),{x,0,nn}], x]Range[0,nn]!] (* Harvey P. Dale, May 22 2012 *)

Formula

E.g.f.: -(-1+x)^2/(-1+2*x-x^2+x^3)
Recurrence: {a(1)=0, a(0)=1, a(2)=0, (-11*n-6-n^3-6*n^2)*a(n) +(n^2+5*n+6)*a(n+1) +(-2*n-6)*a(n+2) +a(n+3)=0}
Sum(-1/23*(2-11*_alpha+6*_alpha^2)*_alpha^(-1-n), _alpha=RootOf(-1+2*_Z-_Z^2+_Z^3))*n!
a(n) = (-1)^n*n!*A099529(n). - R. J. Mathar, Jun 03 2022
Showing 1-5 of 5 results.