cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A053223 Second differences of sigma(n).

Original entry on oeis.org

-1, 2, -4, 7, -10, 11, -9, 7, -11, 22, -30, 24, -10, 7, -20, 34, -40, 41, -32, 14, -16, 48, -65, 40, -13, 18, -42, 68, -82, 71, -46, 21, -12, 49, -96, 75, -26, 38, -82, 102, -106, 92, -46, 0, -18, 100, -143, 103, -57, 47, -70, 110, -114, 96, -88, 50, -40, 138, -214, 140, -26, 15, -66
Offset: 1

Views

Author

Asher Auel, Jan 06 2000

Keywords

Crossrefs

Indices of 0: A099632 - 1.

Programs

  • Magma
    [DivisorSigma(1, n+2) - 2*DivisorSigma(1,n+1) + DivisorSigma(1, n): n in [1..100]]; // G. C. Greubel, Sep 03 2018
  • Mathematica
    Table[DivisorSigma[1,n+2] - 2*DivisorSigma[1,n+1] + DivisorSigma[1,n], {n,1,100}] (* G. C. Greubel, Sep 03 2018 *)
  • PARI
    a(n)=sigma(n+2)-2*sigma(n+1)+sigma(n) \\ Charles R Greathouse IV, Mar 09 2014
    

Formula

G.f.: -1 - 1/x + (1 - x)^2*Sum_{k>=1} k*x^(k-2)/(1 - x^k). - Ilya Gutkovskiy, Jan 29 2017

A226361 Numbers n such that sigma(n) = sigma(n+1) + sigma(n+2).

Original entry on oeis.org

378624, 661152, 5479092, 5526024, 7179624, 18744216, 122321970, 168201288, 215676636, 778701984, 1482154170, 1788138780, 1974360132, 2288979096, 3361923780, 4214315484, 4757106144, 4971510492, 6264306144, 6884356716, 10730488296, 11375549304, 16851779736
Offset: 1

Views

Author

Alex Ratushnyak, Jun 05 2013

Keywords

Crossrefs

Programs

  • Mathematica
    nn = 10^7; t = {}; sig0 = 1; sig1 = 3; Do[sig2 = DivisorSigma[1, n + 2]; If[sig0 == sig1 + sig2, AppendTo[t, n]]; sig0 = sig1; sig1 = sig2, {n, nn}]; t (* T. D. Noe, Jun 05 2013 *)

Extensions

a(17)-a(23) from Donovan Johnson, Jun 05 2013

A226475 Numbers n such that sigma(n) + sigma(n+1) = sigma(n+2) + sigma(n+3).

Original entry on oeis.org

75, 113, 295, 533, 686, 2130, 14805, 26966, 30235, 35095, 135653, 355675, 432996, 590138, 1214588, 2692853, 2952064, 3375195, 3486795, 5973014, 6880351, 7334956, 22266602, 25841659, 30483834, 37416582, 38390010, 40952513, 41109593, 57242145
Offset: 1

Views

Author

Alex Ratushnyak, Jun 11 2013

Keywords

Comments

Sigma(n) is the sum of the divisors of n: A000203.

Examples

			sigma(75) + sigma(76) = 124 + 140 = 264, and sigma(77) + sigma(78) = 96 + 168 = 264, so 75 is in the sequence.
		

Crossrefs

Programs

A076666 Numbers n such that sigma(n) + sigma(n+3) = sigma(n+1) + sigma(n+2).

Original entry on oeis.org

2012, 2096, 15892, 17888, 39916, 102784, 141008, 146227, 482144, 487865, 1321312, 1887008, 2749057, 3513881, 7141158, 16767172, 17503912, 28122834, 30534728, 37453779, 42140437, 60994100, 67777337, 78251933, 113091820, 113768920, 129868059, 199240914, 240859196, 302897372
Offset: 1

Views

Author

Joseph L. Pe, Oct 25 2002

Keywords

Comments

Each term of the sequence marks the start of four consecutive sigma-values for which the sum of the means equals the sum of the extremes.

Examples

			sigma(2012) + sigma(2015) = 3528 + 2688 = 6216; sigma(2013) + sigma(2014) = 2976 + 3240 = 6216, so 2012 is a term of the sequence.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10^5], DivisorSigma[1, # ] + DivisorSigma[1, # + 3] == DivisorSigma[1, # + 1] + DivisorSigma[1, # + 2] &]

Extensions

a(6)-a(26) from Donovan Johnson, Feb 01 2009
a(27)-a(30) from Alex Ratushnyak, Jun 29 2013

A099633 Numbers k such that (phi(k-2) + phi(k+2))/2 = phi(k); 2-phi/balanced numbers.

Original entry on oeis.org

5, 10, 14, 20, 25, 50, 80, 154, 200, 434, 520, 610, 815, 1205, 1345, 2680, 3200, 3560, 4669, 7330, 9290, 10130, 11705, 17630, 24410, 25090, 33385, 34205, 39754, 39785, 40870, 48470, 55979, 59090, 73165, 75470, 78035, 95990, 107680, 115685, 120230
Offset: 1

Views

Author

Labos Elemer, Oct 27 2004

Keywords

Examples

			k=154, phi(152)=72, phi(156)=48, phi(154)=60.
		

Crossrefs

Programs

Extensions

Incorrect term 2 removed by Michel Marcus, Nov 19 2022

A226753 Numbers n such that sigma(n) + sigma(n+1) + sigma(n+2) = sigma(n+3) + sigma(n+4) + sigma(n+5).

Original entry on oeis.org

52, 56, 2199, 17312, 92444, 31768040, 41159079, 52236776, 79563436, 683321810, 689969123, 757808252, 881421986, 910016369, 22184779055
Offset: 1

Views

Author

Alex Ratushnyak, Jun 16 2013

Keywords

Comments

The sequence of corresponding sums begins: 272, 290, 10820, 86514, 473568, 162349956, 203060920, 258797664, 398693936, 3418531584, 3544794576, 3812186016, 4066082208, 4374966816.

Examples

			Sigma(52) + sigma(53) + sigma(54) = 98 + 54 + 120 = 272.
Sigma(55) + sigma(56) + sigma(57) = 72 + 120 + 80 = 272.
So 52 is in the sequence.
		

Crossrefs

Extensions

a(15) from Giovanni Resta, Jun 17 2013
Showing 1-6 of 6 results.