cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A099676 Partial sums of repdigits of A002283.

Original entry on oeis.org

9, 108, 1107, 11106, 111105, 1111104, 11111103, 111111102, 1111111101, 11111111100, 111111111099, 1111111111098, 11111111111097, 111111111111096, 1111111111111095, 11111111111111094, 111111111111111093, 1111111111111111092, 11111111111111111091
Offset: 1

Views

Author

Labos Elemer, Nov 17 2004

Keywords

Comments

a(n) is the maximal positive integer k such that the sequence 1, 2, 3, 4, ..., k-1, k has a total of n*k digits. - Bui Quang Tuan, Mar 12 2015

Examples

			9 + 99 + 999 + 9999 + 99999 = a(5) = 111105.
		

Crossrefs

Programs

  • Magma
    [(10/9)*(10^n-1)-n: n in [1..20]]; // Vincenzo Librandi, Mar 14 2014
  • Maple
    a:=n->sum((10^(n-j)-1^(n-j)), j=0..n): seq(a(n), n=1..17); # Zerinvary Lajos, Jan 15 2007
  • Mathematica
    <Vincenzo Librandi, Mar 14 2014 *)
    LinearRecurrence[{12,-21,10},{9,108,1107},20] (* Harvey P. Dale, Apr 18 2015 *)
  • PARI
    Vec(-9*x/((x-1)^2*(10*x-1)) + O(x^100)) \\ Colin Barker, Mar 12 2014
    
  • Sage
    [gaussian_binomial(n,1,10)-n for n in range(2,19)] # Zerinvary Lajos, May 29 2009
    

Formula

a(n) = (10/9)*(10^n-1) - n. - R. Piyo (nagoya314(AT)yahoo.com), Dec 10 2004
From Colin Barker, Mar 12 2014: (Start)
a(n) = 12*a(n-1)-21*a(n-2)+10*a(n-3).
G.f.: -9*x / ((x-1)^2*(10*x-1)). (End)
E.g.f.: exp(x)*(10*(exp(9*x) - 1) - 9*x)/9. - Stefano Spezia, Sep 13 2023