A099761 a(n) = ( n*(n+2) )^2.
0, 9, 64, 225, 576, 1225, 2304, 3969, 6400, 9801, 14400, 20449, 28224, 38025, 50176, 65025, 82944, 104329, 129600, 159201, 193600, 233289, 278784, 330625, 389376, 455625, 529984, 613089, 705600, 808201, 921600, 1046529, 1183744, 1334025
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Crossrefs
Cf. A005563.
Programs
-
GAP
List([0..40], n-> (n*(n+2))^2); # G. C. Greubel, Sep 03 2019
-
Magma
[(n*(n+2))^2: n in [0..40]]; // G. C. Greubel, Sep 03 2019
-
Maple
A099761 := proc(n) n^2*(n+2)^2 ; end proc: seq(A099761(n), n=0..40) ; # R. J. Mathar, Apr 02 2011
-
Mathematica
Table[1 -2m^2 +m^4, {m,40}] (* Artur Jasinski, Aug 15 2007 *)
-
PARI
vector(40, n, (n^2-1)^2) \\ G. C. Greubel, Sep 03 2019
-
Sage
[(n*(n+2))^2 for n in (0..40)] # G. C. Greubel, Sep 03 2019
Formula
G.f.: x*(9 +19*x -5*x^2 +x^3)/(1-x)^5. - R. J. Mathar, Apr 02 2011
a(n) = (A005563(n))^2. - Pedro Caceres, Aug 04 2019
E.g.f.: exp(x)*x*(9 + 23*x + 10*x^2 + x^3). - Stefano Spezia, Aug 05 2019
a(n) = (determinant [T(n-1) T(n) ; T(n+1) T(n+2)])^2 where T is A000217. - J. M. Bergot, May 17 2012 and Bernard Schott, Aug 06 2019
From Amiram Eldar, Jul 13 2020: (Start)
Sum_{n>=1} 1/a(n) = Pi^2/12 - 11/16.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/24 - 5/16. (End)
Extensions
Deleted a trivial formula which was based on another offset - R. J. Mathar, Dec 16 2009
Comments