cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A007204 Crystal ball sequence for D_4 lattice.

Original entry on oeis.org

1, 25, 169, 625, 1681, 3721, 7225, 12769, 21025, 32761, 48841, 70225, 97969, 133225, 177241, 231361, 297025, 375769, 469225, 579121, 707281, 855625, 1026169, 1221025, 1442401, 1692601, 1974025, 2289169, 2640625, 3031081, 3463321, 3940225, 4464769, 5040025
Offset: 0

Views

Author

N. J. A. Sloane and J. H. Conway, Apr 28 1994

Keywords

Comments

Equals binomial transform of [1, 24, 120, 192, 96, 0, 0, 0, ...]. - Gary W. Adamson, Aug 13 2009
Hypotenuse of Pythagorean triangles with hypotenuse a square: A057769(n)^2 + A069074(n-1)^2 = a(n)^2. - Martin Renner, Nov 12 2011
Numbers n such that n*x^4 + x^2 + 1 is reducible. - Arkadiusz Wesolowski, Nov 04 2013

References

  • Albert H. Beiler, Recreations in the theory of numbers, New York: Dover, (2nd ed.) 1966, p. 106, table 53.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [(2*n^2+2*n+1)^2: n in [0..40]]; // Vincenzo Librandi, Nov 18 2016
    
  • Maple
    A007204:=n->(2*n^2+2*n+1)^2; seq(A007204(n), n=0..30);
  • Mathematica
    Table[(2n^2+2n+1)^2,{n,0,30}] (* or *) LinearRecurrence[{5,-10,10,-5,1},{1,25,169,625,1681},40] (* Harvey P. Dale, Mar 03 2013 *)
  • PARI
    a(n)=(2*n^2+2*n+1)^2 \\ Charles R Greathouse IV, Feb 08 2017

Formula

G.f.: (1 + 54*x^2 + 20*x + 20*x^3 + x^4)/(1-x)^5.
a(0)=1, a(1)=25, a(2)=169, a(3)=625, a(4)=1681, a(n)=5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). - Harvey P. Dale, Mar 03 2013
Sum_{n>=0} 1/a(n) = Pi*(sinh(Pi) - Pi)/(2*(cosh(Pi) + 1)) = 1.0487582722070177... - Ilya Gutkovskiy, Nov 18 2016
a(n) = A016754(n) + A060300(n). - Bruce J. Nicholson, Apr 14 2017
a(n) = A001844(n)^2 = (2*n^2+2*n+1)^2. - Bruce J. Nicholson, May 15 2017
a(n) = A000583(n+1) + A099761(n) + 2*A005563(n-1)*A000290(n). - Charlie Marion, Jan 14 2021
E.g.f.: exp(x)*(1 + 24*x + 60*x^2 + 32*x^3 + 4*x^4). - Stefano Spezia, Jun 06 2021

Extensions

More terms from Harvey P. Dale, Mar 03 2013

A244730 a(n) = 2*n^4.

Original entry on oeis.org

0, 2, 32, 162, 512, 1250, 2592, 4802, 8192, 13122, 20000, 29282, 41472, 57122, 76832, 101250, 131072, 167042, 209952, 260642, 320000, 388962, 468512, 559682, 663552, 781250, 913952, 1062882, 1229312, 1414562, 1620000, 1847042, 2097152, 2371842, 2672672
Offset: 0

Views

Author

Vincenzo Librandi, Jul 05 2014

Keywords

Crossrefs

Programs

  • Magma
    [2*n^4: n in [0..40]];
    
  • Magma
    I:=[0,2,32,162, 512]; [n le 5 select I[n] else 5*Self(n-1)-10*Self(n-2)+10*Self(n-3)-5*Self(n-4)+Self(n-5): n in [1..40]];
  • Mathematica
    Table[2 n^4, {n, 0, 40}] (* or *) CoefficientList[Series[2(x + 11 x^2 + 11 x^3 + x^4)/(1 - x)^5, {x, 0, 40}], x]
    LinearRecurrence[{5,-10,10,-5,1},{0,2,32,162,512},40] (* Harvey P. Dale, Jun 17 2022 *)

Formula

G.f.: 2*(x + 11*x^2 + 11*x^3 + x^4)/(1 - x)^5.
a(n) = 5*a(n-1)-10*a(n-2)+10*a(n-3)-5*a(n-4)+a(n-5) for n>4.
a(n) = (A082044(n) + A099761(n+1)-2)/2. - Bruce J. Nicholson, Jun 12 2017

A156701 a(n) = 4*n^4 + 17*n^2 + 4.

Original entry on oeis.org

4, 25, 136, 481, 1300, 2929, 5800, 10441, 17476, 27625, 41704, 60625, 85396, 117121, 157000, 206329, 266500, 339001, 425416, 527425, 646804, 785425, 945256, 1128361, 1336900, 1573129, 1839400, 2138161, 2471956, 2843425, 3255304, 3710425
Offset: 0

Views

Author

Reinhard Zumkeller, Feb 13 2009

Keywords

Comments

a(n) = A087475(n)*A053755(n).

Crossrefs

Programs

  • Magma
    [4*n^4+17*n^2+4: n in [0..50]]; // Vincenzo Librandi, Dec 27 2010
    
  • Mathematica
    Table[4n^4+17n^2+4,{n,0,40}] (* or *) LinearRecurrence[{5,-10,10,-5,1},{4,25,136,481,1300},50] (* Harvey P. Dale, Nov 08 2017 *)
  • PARI
    a(n)=4*n^4+17*n^2+4 \\ Charles R Greathouse IV, Oct 21 2022

Formula

a(n) = (2*(n^2 - 1))^2 + (5*n)^2.
G.f.: (-4-25*x^4-11*x^3-51*x^2-5*x)/(x-1)^5. - Maksym Voznyy (voznyy(AT)mail.ru), Jul 26 2009
E.g.f.: exp(x)*(4 + 21*x + 45*x^2 + 24*x^3 + 4*x^4). - Stefano Spezia, Jul 08 2023

A171638 Denominator of 1/(n-2)^2 - 1/(n+2)^2.

Original entry on oeis.org

0, 25, 9, 441, 64, 2025, 225, 5929, 576, 13689, 1225, 27225, 2304, 48841, 3969, 81225, 6400, 127449, 9801, 190969, 14400, 275625, 20449, 385641, 28224, 525625, 38025, 700569, 50176, 915849, 65025, 1177225, 82944, 1490841
Offset: 2

Views

Author

Paul Curtz, Dec 13 2009

Keywords

Comments

Fifth column of an array of denominators related to the energies of the hydrogen spectrum, mentioned in A171522. At n=2, the defining formula has a pole and is replaced by 0 to conform with A171621 and A099761.

Crossrefs

Programs

  • Magma
    [0] cat [Denominator((1/(n-2)^2 -1/(n+2)^2)): n in [3..350]]; // Bruno Berselli, Apr 05 2011
    
  • Maple
    A061037 := proc(n) 1/4-1/n^2 ; numer(%) ; end proc:
    A171621 := proc(n) if n mod 4 = 2 then 4*A061037(n) ; else A061037(n) ; end if; end proc:
    A171638 := proc(n) A171621(n)^2 ; end proc:
    seq(A171638(n),n=2..90) ; # R. J. Mathar, Apr 02 2011
  • Mathematica
    Table[If[n == 2, 0, Denominator[1/(n-2)^2 - 1/(n+2)^2]], {n, 2, 50}] (* G. C. Greubel, Sep 20 2018 *)
    LinearRecurrence[{0,5,0,-10,0,10,0,-5,0,1},{0,25,9,441,64,2025,225,5929,576,13689},50] (* Harvey P. Dale, Sep 07 2021 *)
  • PARI
    for(n=2,100, print1(if(n==2,0, denominator(1/(n-2)^2 - 1/(n+2)^2)), ", ")) \\ G. C. Greubel, Sep 20 2018

Formula

a(n) = (A171621(n))^2.
a(2*n+2) = A099761(n).
G.f.: -((x(25+9*x+316*x^2+19*x^3+70*x^4-5*x^5-36*x^6+x^7+9*x^8))/((-1+x)^5 (1+x)^5)). - Harvey P. Dale, Sep 07 2021
Sum_{n>=3} 1/a(n) = 19*Pi^2/192 - 115/144. - Amiram Eldar, Aug 14 2022

A280058 Number of 2 X 2 matrices with entries in {0,1,...,n} with determinant = permanent with no entries repeated.

Original entry on oeis.org

0, 0, 0, 12, 48, 120, 240, 420, 672, 1008, 1440, 1980, 2640, 3432, 4368, 5460, 6720, 8160, 9792, 11628, 13680, 15960, 18480, 21252, 24288, 27600, 31200, 35100, 39312, 43848, 48720, 53940, 59520, 65472, 71808, 78540, 85680, 93240, 101232, 109668, 118560
Offset: 0

Views

Author

Indranil Ghosh, Dec 25 2016

Keywords

Comments

Consider all Pythagorean triples (X,Y,Z=Y+2) ordered by increasing Z; A005843, A005563, A002522 and A007531 give the X, Y, Z and area A values of related triangles; for n >= 2 altitude h(n) = a(n+1)/A002522(n) or h(n)/2 is irreducible fraction in Q\Z. - Ralf Steiner, Mar 29 2020

Crossrefs

Cf. A000292, A015237 (where the entries can be repeated), A005843, A005563, A002522, A016742, A099761, A007531.

Programs

  • Mathematica
    Table[2*n*(n-1)*(n-2), {n, 0, 50}] (* G. C. Greubel, Dec 25 2016 *)
  • PARI
    for(n=0, 50, print1(2*n*(n-1)*(n-2), ", ")) \\ G. C. Greubel, Dec 25 2016
    
  • PARI
    a(n)=12*binomial(n,3) \\ Charles R Greathouse IV, Dec 25 2016
  • Python
    def t(n):
        s=0
        for a in range(0,n+1):
            for b in range(0,n+1):
                if a!=b:
                    for c in range(0,n+1):
                        if a!=c and b!=c:
                            for d in range(0,n+1):
                                if d!=a and d!=b and d!=c:
                                    if (a*d-b*c)==(a*d+b*c):
                                        s+=1
        return s
    for i in range(0,201):
        print(str(i)+" "+str(t(i)))
    
  • Python
    a = lambda n: 2*n*(n-1)*(n-2) # David Radcliffe, Jun 14 2025
    

Formula

a(n) = 2*((n+1)^3 - 6*(n+1)^2 + 11*(n+1) - 6), for n>0.
a(n) = 2*n*(n-1)*(n-2). - David Radcliffe, Jun 14 2025
a(n) == 0 (mod 12).
From G. C. Greubel, Dec 25 2016: (Start)
G.f.: (12*x^3)/(1 - x)^4.
E.g.f.: 2*x^3*exp(x).
a(n) = 2*n*(n-1)*(n-2).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). (End)
a(n) = 12 * A000292(n-2) for n>1. - Alois P. Heinz, Jan 30 2017
a(n+1) = sqrt(A016742(n)*A099761(n-1)) for n>=2. - Ralf Steiner, Mar 29 2020
From Amiram Eldar, Jun 30 2025: (Start)
Sum_{n>=3} 1/a(n) = 1/8.
Sum_{n>=3} (-1)^(n+1)/a(n) = log(2) - 5/8. (End)
Showing 1-5 of 5 results.