cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A099774 Number of divisors of 2*n-1.

Original entry on oeis.org

1, 2, 2, 2, 3, 2, 2, 4, 2, 2, 4, 2, 3, 4, 2, 2, 4, 4, 2, 4, 2, 2, 6, 2, 3, 4, 2, 4, 4, 2, 2, 6, 4, 2, 4, 2, 2, 6, 4, 2, 5, 2, 4, 4, 2, 4, 4, 4, 2, 6, 2, 2, 8, 2, 2, 4, 2, 4, 6, 4, 3, 4, 4, 2, 4, 2, 4, 8, 2, 2, 4, 4, 4, 6, 2, 2, 6, 4, 2, 4, 4, 2, 8, 2, 3, 6, 2, 6, 4, 2, 2, 4, 4, 4, 8, 2, 2, 8, 2, 2, 4, 4, 4, 6, 4
Offset: 1

Views

Author

N. J. A. Sloane, Nov 19 2004

Keywords

Examples

			a(5)=3 because the divisors of 9 are: 1, 3 and 9.
		

Crossrefs

Bisection of A000005.

Programs

  • GAP
    List([1..120],n->Tau(2*n-1)); # Muniru A Asiru, Dec 21 2018
  • Haskell
    a099774 = a000005 . a005408  -- Reinhard Zumkeller, Sep 22 2014
    
  • Magma
    [NumberOfDivisors(2*n+1): n in [0..100]]; // Vincenzo Librandi, Mar 18 2015
    
  • Maple
    with(numtheory): seq(tau(2*n-1),n=1..120);
  • Mathematica
    nn = 200;
    f[list_, i_] := list[[i]];a =Table[Boole[OddQ[n]], {n, 1, nn}];Select[Table[DirichletConvolve[f[a,n], f[a, n], n, m], {m, 1, nn}], # > 0 &] (* Geoffrey Critzer, Feb 15 2015 *)
    Table[DivisorSigma[0, 2*n-1], {n, 1, 100}] (* Vaclav Kotesovec, Jan 14 2019 *)
  • PARI
    {a(n)=if(n<1, 0, numdiv(2*n-1))} /* Michael Somos, Sep 03 2006 */
    

Formula

G.f.: Sum_{k>0} x^k/(1-x^(2*k-1)). - Michael Somos, Sep 02 2006
G.f.: sum(k>=1, x^((2*k-1)^2/2+1/2) * (1+x^(2*k-1))/(1-x^(2*k-1)) ). - Joerg Arndt, Nov 08 2010
Dirichlet g.f. (with interpolated zeros): zeta(s)^2*(1-1/2^s)^2. - Geoffrey Critzer, Feb 15 2015
Sum_{k=1..n} a(k) ~ (n*log(n) + (2*gamma - 1 + 3*log(2))*n)/2, where gamma is Euler's constant (A001620). - Amiram Eldar, Nov 27 2022

Extensions

More terms from Emeric Deutsch, Dec 03 2004