cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 39 results. Next

A263085 Partial sums of A099774 (A099774(n) = number of divisors of n-th odd number).

Original entry on oeis.org

1, 3, 5, 7, 10, 12, 14, 18, 20, 22, 26, 28, 31, 35, 37, 39, 43, 47, 49, 53, 55, 57, 63, 65, 68, 72, 74, 78, 82, 84, 86, 92, 96, 98, 102, 104, 106, 112, 116, 118, 123, 125, 129, 133, 135, 139, 143, 147, 149, 155, 157, 159, 167, 169, 171, 175, 177, 181, 187, 191, 194, 198
Offset: 1

Views

Author

Antti Karttunen, Oct 12 2015

Keywords

Crossrefs

Programs

  • Mathematica
    FoldList[DivisorSigma[0,2*#2-1]+#1&,1,Range[2,62]] (* Ivan N. Ianakiev, Oct 24 2015 *)
    Accumulate[Table[DivisorSigma[0, 2*n-1], {n, 1, 100}]] (* Vaclav Kotesovec, Jan 14 2019 *)
  • PARI
    lista(nn) = {s = 0; forstep (n=1, nn, 2, s += numdiv(n); print1(s, ", "););} \\ Michel Marcus, Oct 12 2015

Formula

a(1) = 1; for n > 1, a(n) = A000005(2*n-1) + a(n-1).
a(n) = A263086(n) - A263084(n).
a(n) ~ n * (log(n) + 2*gamma + 3*log(2) - 1)/2, where gamma is Euler's constant (A001620). - Amiram Eldar, Jan 14 2024

A049310 Triangle of coefficients of Chebyshev's S(n,x) := U(n,x/2) polynomials (exponents in increasing order).

Original entry on oeis.org

1, 0, 1, -1, 0, 1, 0, -2, 0, 1, 1, 0, -3, 0, 1, 0, 3, 0, -4, 0, 1, -1, 0, 6, 0, -5, 0, 1, 0, -4, 0, 10, 0, -6, 0, 1, 1, 0, -10, 0, 15, 0, -7, 0, 1, 0, 5, 0, -20, 0, 21, 0, -8, 0, 1, -1, 0, 15, 0, -35, 0, 28, 0, -9, 0, 1, 0, -6, 0, 35, 0, -56, 0, 36, 0, -10, 0, 1, 1, 0, -21, 0, 70, 0, -84, 0
Offset: 0

Views

Author

Keywords

Comments

G.f. for row polynomials S(n,x) (signed triangle): 1/(1-x*z+z^2). Unsigned triangle |a(n,m)| has Fibonacci polynomials F(n+1,x) as row polynomials with g.f. 1/(1-x*z-z^2). |a(n,m)| triangle has rows of Pascal's triangle A007318 in the even-numbered diagonals (odd-numbered ones have only 0's).
Row sums (unsigned triangle) A000045(n+1) (Fibonacci). Row sums (signed triangle) S(n,1) sequence = periodic(1,1,0,-1,-1,0) = A010892.
Alternating row sums A049347(n) = S(n,-1) = periodic(1,-1,0). - Wolfdieter Lang, Nov 04 2011
S(n,x) is the characteristic polynomial of the adjacency matrix of the n-path. - Michael Somos, Jun 24 2002
S(n,x) is also the matching polynomial of the n-path. - Eric W. Weisstein, Apr 10 2017
|T(n,k)| = number of compositions of n+1 into k+1 odd parts. Example: |T(7,3)| = 10 because we have (1,1,3,3), (1,3,1,3), (1,3,3,1), (3,1,1,3), (3,1,3,1), (3,3,1,1), (1,1,1,5), (1,1,5,1), (1,5,1,1) and (5,1,1,1). - Emeric Deutsch, Apr 09 2005
S(n,x)= R(n,x) + S(n-2,x), n >= 2, S(-1,x)=0, S(0,x)=1, R(n,x):=2*T(n,x/2) = Sum_{m=0..n} A127672(n,m)*x^m (monic integer Chebyshev T-Polynomials). This is the rewritten so-called trace of the transfer matrix formula for the T-polynomials. - Wolfdieter Lang, Dec 02 2010
In a regular N-gon inscribed in a unit circle, the side length is d(N,1) = 2*sin(Pi/N). The length ratio R(N,k):=d(N,k)/d(N,1) for the (k-1)-th diagonal, with k from {2,3,...,floor(N/2)}, N >= 4, equals S(k-1,x) = sin(k*Pi/N)/sin(Pi/N) with x=rho(N):=R(N,2) = 2*cos(Pi/N). Example: N=7 (heptagon), rho=R(7,2), sigma:=R(N,3) = S(2,rho) = rho^2 - 1. Motivated by the quoted paper by P. Steinbach. - Wolfdieter Lang, Dec 02 2010
From Wolfdieter Lang, Jul 12 2011: (Start)
In q- or basic analysis, q-numbers are [n]_q := S(n-1,q+1/q) = (q^n-(1/q)^n)/(q-1/q), with the row polynomials S(n,x), n >= 0.
The zeros of the row polynomials S(n-1,x) are (from those of Chebyshev U-polynomials):
x(n-1;k) = +- t(k,rho(n)), k = 1..ceiling((n-1)/2), n >= 2, with t(n,x) the row polynomials of A127672 and rho(n):= 2*cos(Pi/n). The simple vanishing zero for even n appears here as +0 and -0.
Factorization of the row polynomials S(n-1,x), x >= 1, in terms of the minimal polynomials of cos(2 Pi/2), called Psi(n,x), with coefficients given by A181875/A181876:
S(n-1,x) = (2^(n-1))*Product_{n>=1}(Psi(d,x/2), 2 < d | 2n).
(From the rewritten eq. (3) of the Watkins and Zeitlin reference, given under A181872.) [See the W. Lang ArXiv link, Proposition 9, eq. (62). - Wolfdieter Lang, Apr 14 2018]
(End)
The discriminants of the S(n,x) polynomials are found in A127670. - Wolfdieter Lang, Aug 03 2011
This is an example for a subclass of Riordan convolution arrays (lower triangular matrices) called Bell arrays. See the L. W. Shapiro et al. reference under A007318. If a Riordan array is named (G(z),F(z)) with F(z)=z*Fhat(z), the o.g.f. for the row polynomials is G(z)/(1-x*z*Fhat(z)), and it becomes a Bell array if G(z)=Fhat(z). For the present Bell type triangle G(z)=1/(1+z^2) (see the o.g.f. comment above). This leads to the o.g.f. for the column no. k, k >= 0, x^k/(1+x^2)^(k+1) (see the formula section), the one for the row sums and for the alternating row sums (see comments above). The Riordan (Bell) A- and Z-sequences (defined in a W. Lang link under A006232, with references) have o.g.f.s 1-x*c(x^2) and -x*c(x^2), with the o.g.f. of the Catalan numbers A000108. Together they lead to a recurrence given in the formula section. - Wolfdieter Lang, Nov 04 2011
The determinant of the N x N matrix S(N,[x[1], ..., x[N]]) with elements S(m-1,x[n]), for n, m = 1, 2, ..., N, and for any x[n], is identical with the determinant of V(N,[x[1], ..., x[N]]) with elements x[n]^(m-1) (a Vandermondian, which equals Product_{1 <= i < j<= N} (x[j] - x[i])). This is a special instance of a theorem valid for any N >= 1 and any monic polynomial system p(m,x), m>=0, with p(0,x) = 1. For this theorem see the Vein-Dale reference, p. 59. Thanks to L. Edson Jeffery for an email asking for a proof of the non-singularity of the matrix S(N,[x[1], ...., x[N]]) if and only if the x[j], j = 1..N, are pairwise distinct. - Wolfdieter Lang, Aug 26 2013
These S polynomials also appear in the context of modular forms. The rescaled Hecke operator T*n = n^((1-k)/2)*T_n acting on modular forms of weight k satisfies T*(p^n) = S(n, T*p), for each prime p and positive integer n. See the Koecher-Krieg reference, p. 223. - _Wolfdieter Lang, Jan 22 2016
For a shifted o.g.f. (mod signs), its compositional inverse, and connections to Motzkin and Fibonacci polynomials, non-crossing partitions and other combinatorial structures, see A097610. - Tom Copeland, Jan 23 2016
From M. Sinan Kul, Jan 30 2016; edited by Wolfdieter Lang, Jan 31 2016 and Feb 01 2016: (Start)
Solutions of the Diophantine equation u^2 + v^2 - k*u*v = 1 for integer k given by (u(k,n), v(k,n)) = (S(n,k), S(n-1,k)) because of the Cassini-Simson identity: S(n,x)^2 - S(n+1,x)*S(n-1, x) = 1, after use of the S-recurrence. Note that S(-n, x) = -S(-n-2, x), n >= 1, and the periodicity of some S(n, k) sequences.
Hence another way to obtain the row polynomials would be to take powers of the matrix [x, -1; 1,0]: S(n, x) = (([x, -1; 1, 0])^n)[1,1], n >= 0.
See also a Feb 01 2016 comment on A115139 for a well-known S(n, x) sum formula.
Then we have with the present T triangle
A039834(n) = -i^(n+1)*T(n-1, k) where i is the imaginary unit and n >= 0.
A051286(n) = Sum_{i=0..n} T(n,i)^2 (see the Philippe Deléham, Nov 21 2005 formula),
A181545(n) = Sum_{i=0..n+1} abs(T(n,i)^3),
A181546(n) = Sum_{i=0..n+1} T(n,i)^4,
A181547(n) = Sum_{i=0..n+1} abs(T(n,i)^5).
S(n, 0) = A056594(n), and for k = 1..10 the sequences S(n-1, k) with offset n = 0 are A128834, A001477, A001906, A001353, A004254, A001109, A004187, A001090, A018913, A004189.
(End)
For more on the Diophantine equation presented by Kul, see the Ismail paper. - Tom Copeland, Jan 31 2016
The o.g.f. for the Legendre polynomials L(n,x) is 1 / sqrt(1- 2x*z + z^2), and squaring it gives the o.g.f. of U(n,x), A053117, so Sum_{k=0..n} L(k,x/2) L(n-k,x/2) = S(n,x). This gives S(n,x) = L(n/2,x/2)^2 + 2*Sum_{k=0..n/2-1} L(k,x/2) L(n-k,x/2) for n even and S(n,x) = 2*Sum_{k=0..(n-1)/2} L(k,x/2) L(n-k,x/2) for odd n. For a connection to elliptic curves and modular forms, see A053117. For the normalized Legendre polynomials, see A100258. For other properties and relations to other polynomials, see Allouche et al. - Tom Copeland, Feb 04 2016
LG(x,h1,h2) = -log(1 - h1*x + h2*x^2) = Sum_{n>0} F(n,-h1,h2,0,..,0) x^n/n is a log series generator of the bivariate row polynomials of A127672 with A127672(0,0) = 0 and where F(n,b1,b2,..,bn) are the Faber polynomials of A263916. Exp(LG(x,h1,h2)) = 1 / (1 - h1*x + h2*x^2 ) is the o.g.f. of the bivariate row polynomials of this entry. - Tom Copeland, Feb 15 2016 (Instances of the bivariate o.g.f. for this entry are on pp. 5 and 18 of Sunada. - Tom Copeland, Jan 18 2021)
For distinct odd primes p and q the Legendre symbol can be written as Legendre(q,p) = Product_{k=1..P} S(q-1, 2*cos(2*Pi*k/p)), with P = (p-1)/2. See the Lemmermeyer reference, eq. (8.1) on p. 236. Using the zeros of S(q-1, x) (see above) one has S(q-1, x) = Product_{l=1..Q} (x^2 - (2*cos(Pi*l/q))^2), with Q = (q-1)/2. Thus S(q-1, 2*cos(2*Pi*k/p)) = ((-4)^Q)*Product_{l=1..Q} (sin^2(2*Pi*k/p) - sin^2(Pi*l/q)) = ((-4)^Q)*Product_{m=1..Q} (sin^2(2*Pi*k/p) - sin^2(2*Pi*m/q)). For the proof of the last equality see a W. Lang comment on the triangle A057059 for n = Q and an obvious function f. This leads to Eisenstein's proof of the quadratic reciprocity law Legendre(q,p) = ((-1)^(P*Q)) * Legendre(p,q), See the Lemmermeyer reference, pp. 236-237. - Wolfdieter Lang, Aug 28 2016
For connections to generalized Fibonacci polynomials, compare their generating function on p. 5 of the Amdeberhan et al. link with the o.g.f. given above for the bivariate row polynomials of this entry. - Tom Copeland, Jan 08 2017
The formula for Ramanujan's tau function (see A000594) for prime powers is tau(p^k) = p^(11*k/2)*S(k, p^(-11/2)*tau(p)) for k >= 1, and p = A000040(n), n >= 1. See the Hardy reference, p. 164, eqs. (10.3.4) and (10.3.6) rewritten in terms of S. - Wolfdieter Lang, Jan 27 2017
From Wolfdieter Lang, May 08 2017: (Start)
The number of zeros Z(n) of the S(n, x) polynomials in the open interval (-1,+1) is 2*b(n) for even n >= 0 and 1 + 2*b(n) for odd n >= 1, where b(n) = floor(n/2) - floor((n+1)/3). This b(n) is the number of integers k in the interval (n+1)/3 < k <= floor(n/2). See a comment on the zeros of S(n, x) above, and b(n) = A008615(n-2), n >= 0. The numbers Z(n) have been proposed (with a conjecture related to A008611) by Michel Lagneau, as the number of zeros of Fibonacci polynomials on the imaginary axis (-I,+I), with I=sqrt(-1). They are Z(n) = A008611(n-1), n >= 0, with A008611(-1) = 0. Also Z(n) = A194960(n-4), n >= 0. Proof using the A008611 version. A194960 follows from this.
In general the number of zeros Z(a;n) of S(n, x) for n >= 0 in the open interval (-a,+a) for a from the interval (0,2) (x >= 2 never has zeros, and a=0 is trivial: Z(0;n) = 0) is with b(a;n) = floor(n//2) - floor((n+1)*arccos(a/2)/Pi), as above Z(a;n) = 2*b(a;n) for even n >= 0 and 1 + 2*b(a;n) for odd n >= 1. For the closed interval [-a,+a] Z(0;n) = 1 and for a from (0,1) one uses for Z(a;n) the values b(a;n) = floor(n/2) - ceiling((n+1)*arccos(a/2)/Pi) + 1. (End)
The Riordan row polynomials S(n, x) (Chebyshev S) belong to the Boas-Buck class (see a comment and references in A046521), hence they satisfy the Boas-Buck identity: (E_x - n*1)*S(n, x) = (E_x + 1)*Sum_{p=0..n-1} (1 - (-1)^p)*(-1)^((p+1)/2)*S(n-1-p, x), for n >= 0, where E_x = x*d/dx (Euler operator). For the triangle T(n, k) this entails a recurrence for the sequence of column k, given in the formula section. - Wolfdieter Lang, Aug 11 2017
The e.g.f. E(x,t) := Sum_{n>=0} (t^n/n!)*S(n,x) for the row polynomials is obtained via inverse Laplace transformation from the above given o.g.f. as E(x,t) = ((1/xm)*exp(t/xm) - (1/xp)*exp(t/xp) )/(xp - xm) with xp = (x + sqrt(x^2-4))/2 and xm = (x - sqrt(x^2-4))/2. - Wolfdieter Lang, Nov 08 2017
From Wolfdieter Lang, Apr 12 2018: (Start)
Factorization of row polynomials S(n, x), for n >= 1, in terms of C polynomials (not Chebyshev C) with coefficients given in A187360. This is obtained from the factorization into Psi polynomials (see the Jul 12 2011 comment above) but written in terms of minimal polynomials of 2*cos(2*Pi/n) with coefficients in A232624:
S(2*k, x) = Product_{2 <= d | (2*k+1)} C(d, x)*(-1)^deg(d)*C(d, -x), with deg(d) = A055034(d) the degree of C(d, x).
S(2*k+1, x) = Product_{2 <= d | 2*(k+1)} C(d, x) * Product_{3 <= 2*d + 1 | (k+1)} (-1)^(deg(2*d+1))*C(2*d+1, -x).
Note that (-1)^(deg(2*d+1))*C(2*d+1, -x)*C(2*d+1, x) pairs always appear.
The number of C factors of S(2*k, x), for k >= 0, is 2*(tau(2*k+1) - 1) = 2*(A099774(k+1) - 1) = 2*A095374(k), and for S(2*k+1, x), for k >= 0, it is tau(2*(k+1)) + tau_{odd}(k+1) - 2 = A302707(k), with tau(2*k+1) = A099774(k+1), tau(n) = A000005 and tau(2*(k+1)) = A099777(k+1).
For the reverse problem, the factorization of C polynomials into S polynomials, see A255237. (End)
The S polynomials with general initial conditions S(a,b;n,x) = x*S(a,b;n-1,x) - S(a,b;n-2,x), for n >= 1, with S(a,b;-1,x) = a and S(a,b;0,x) = b are S(a,b;n,x) = b*S(n, x) - a*S(n-1, x), for n >= -1. Recall that S(-2, x) = -1 and S(-1, x) = 0. The o.g.f. is G(a,b;z,x) = (b - a*z)/(1 - x*z + z^2). - Wolfdieter Lang, Oct 18 2019
Also the convolution triangle of A101455. - Peter Luschny, Oct 06 2022
From Wolfdieter Lang, Apr 26 2023: (Start)
Multi-section of S-polynomials: S(m*n+k, x) = S(m+k, x)*S(n-1, R(m, x)) - S(k, x)*S(n-2, R(m, x)), with R(n, x) = S(n, x) - S(n-2, x) (see A127672), S(-2, x) = -1, and S(-1, x) = 0, for n >= 0, m >= 1, and k = 0, 1, ..., m-1.
O.g.f. of {S(m*n+k, y)}_{n>=0}: G(m,k,y,x) = (S(k, y) - (S(k, y)*R(m, y) - S(m+k, y))*x)/(1 - R(m,y)*x + x^2).
See eqs. (40) and (49), with r = x or y and s =-1, of the G. Detlefs and W. Lang link at A034807. (End)
S(n, x) for complex n and complex x: S(n, x) = ((-i/2)/sqrt(1 - (x/2)^2))*(q(x/2)*exp(+n*log(q(x/2))) - (1/q(x/2))*exp(-n*log(q(x/2)))), with q(x) = x + sqrt(1 - x^2)*i. Here log(z) = |z| + Arg(z)*i, with Arg(z) from [-Pi,+Pi) (principal branch). This satisfies the recurrence relation for S because it is derived from the Binet - de Moivre formula for S. Examples: S(n/m, 0) = cos((n/m)*Pi/4), for n >= 0 and m >= 1. S(n*i, 0) = (1/2)*(1 + exp(n*Pi))*exp(-(n/2)*Pi), for n >= 0. S(1+i, 2+i) = 0.6397424847... + 1.0355669490...*i. Thanks to Roberto Alfano for asking a question leading to this formula. - Wolfdieter Lang, Jun 05 2023
Lim_{n->oo} S(n, x)/S(n-1, x) = r(x) = (x - sqrt(x^2 -4))/2, for |x| >= 2. For x = +-2, this limit is +-1. - Wolfdieter Lang, Nov 15 2023

Examples

			The triangle T(n, k) begins:
  n\k  0  1   2   3   4   5   6    7   8   9  10  11
  0:   1
  1:   0  1
  2:  -1  0   1
  3:   0 -2   0   1
  4:   1  0  -3   0   1
  5:   0  3   0  -4   0   1
  6:  -1  0   6   0  -5   0   1
  7:   0 -4   0  10   0  -6   0    1
  8:   1  0 -10   0  15   0  -7    0   1
  9:   0  5   0 -20   0  21   0   -8   0   1
  10: -1  0  15   0 -35   0  28    0  -9   0   1
  11:  0 -6   0  35   0 -56   0   36   0 -10   0   1
  ... Reformatted and extended by _Wolfdieter Lang_, Oct 24 2012
For more rows see the link.
E.g., fourth row {0,-2,0,1} corresponds to polynomial S(3,x)= -2*x + x^3.
From _Wolfdieter Lang_, Jul 12 2011: (Start)
Zeros of S(3,x) with rho(4)= 2*cos(Pi/4) = sqrt(2):
  +- t(1,sqrt(2)) = +- sqrt(2) and
  +- t(2,sqrt(2)) = +- 0.
Factorization of S(3,x) in terms of Psi polynomials:
S(3,x) = (2^3)*Psi(4,x/2)*Psi(8,x/2) = x*(x^2-2).
(End)
From _Wolfdieter Lang_, Nov 04 2011: (Start)
A- and Z- sequence recurrence:
T(4,0) = - (C(0)*T(3,1) + C(1)*T(3,3)) = -(-2 + 1) = +1,
T(5,3) = -3 - 1*1 = -4.
(End)
Boas-Buck recurrence for column k = 2, n = 6: S(6, 2) = (3/4)*(0 - 2* S(4 ,2) + 0 + 2*S(2, 2)) = (3/4)*(-2*(-3) + 2) = 6. - _Wolfdieter Lang_, Aug 11 2017
From _Wolfdieter Lang_, Apr 12 2018: (Start)
Factorization into C polynomials (see the Apr 12 2018 comment):
S(4, x) = 1 - 3*x^2 + x^4 = (-1 + x + x^2)*(-1 - x + x^2) = (-C(5, -x)) * C(5, x); the number of factors is 2 = 2*A095374(2).
S(5, x) = 3*x - 4*x^3 + x^5 = x*(-1 + x)*(1 + x)*(-3 + x^2) = C(2, x)*C(3, x)*(-C(3, -x))*C(6, x); the number of factors is 4 = A302707(2). (End)
		

References

  • G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, AMS Chelsea Publishing, Providence, Rhode Island, 2002, p. 164.
  • Max Koecher and Aloys Krieg, Elliptische Funktionen und Modulformen, 2. Auflage, Springer, 2007, p. 223.
  • Franz Lemmermeyer, Reciprocity Laws. From Euler to Eisenstein, Springer, 2000.
  • D. S. Mitrinovic, Analytic Inequalities, Springer-Verlag, 1970; p. 232, Sect. 3.3.38.
  • Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990, pp. 60 - 61.
  • R. Vein and P. Dale, Determinants and Their Applications in Mathematical Physics, Springer, 1999.

Crossrefs

Cf. A000005, A000217, A000292, A000332, A000389, A001227, A007318, A008611, A008615, A101455, A010892, A011973, A053112 (without zeros), A053117, A053119 (reflection), A053121 (inverse triangle), A055034, A097610, A099774, A099777, A100258, A112552 (first column clipped), A127672, A168561 (absolute values), A187360. A194960, A232624, A255237.
Triangles of coefficients of Chebyshev's S(n,x+k) for k = 5, 4, 3, 2, 1, 0, -1, -2, -3, -4, -5: A207824, A207823, A125662, A078812, A101950, A049310, A104562, A053122, A207815, A159764, A123967.

Programs

  • Magma
    A049310:= func< n,k | ((n+k) mod 2) eq 0 select (-1)^(Floor((n+k)/2)+k)*Binomial(Floor((n+k)/2), k) else 0 >;
    [A049310(n,k): k in [0..n], n in [0..15]]; // G. C. Greubel, Jul 25 2022
  • Maple
    A049310 := proc(n,k): binomial((n+k)/2,(n-k)/2)*cos(Pi*(n-k)/2)*(1+(-1)^(n-k))/2 end: seq(seq(A049310(n,k), k=0..n),n=0..11); # Johannes W. Meijer, Aug 08 2011
    # Uses function PMatrix from A357368. Adds a row above and a column to the left.
    PMatrix(10, n -> ifelse(irem(n, 2) = 0, 0, (-1)^iquo(n-1, 2))); # Peter Luschny, Oct 06 2022
  • Mathematica
    t[n_, k_] /; EvenQ[n+k] = ((-1)^((n+k)/2+k))*Binomial[(n+k)/2, k]; t[n_, k_] /; OddQ[n+k] = 0; Flatten[Table[t[n, k], {n, 0, 12}, {k, 0, n}]][[;; 86]] (* Jean-François Alcover, Jul 05 2011 *)
    Table[Coefficient[(-I)^n Fibonacci[n + 1, - I x], x, k], {n, 0, 10}, {k, 0, n}] //Flatten (* Clark Kimberling, Aug 02 2011; corrected by Eric W. Weisstein, Apr 06 2017 *)
    CoefficientList[ChebyshevU[Range[0, 10], -x/2], x] // Flatten (* Eric W. Weisstein, Apr 06 2017 *)
    CoefficientList[Table[(-I)^n Fibonacci[n + 1, -I x], {n, 0, 10}], x] // Flatten (* Eric W. Weisstein, Apr 06 2017 *)
  • PARI
    {T(n, k) = if( k<0 || k>n || (n + k)%2, 0, (-1)^((n + k)/2 + k) * binomial((n + k)/2, k))} /* Michael Somos, Jun 24 2002 */
    
  • SageMath
    @CachedFunction
    def A049310(n,k):
        if n< 0: return 0
        if n==0: return 1 if k == 0 else 0
        return A049310(n-1,k-1) - A049310(n-2,k)
    for n in (0..9): [A049310(n,k) for k in (0..n)] # Peter Luschny, Nov 20 2012
    

Formula

T(n,k) := 0 if n < k or n+k odd, otherwise ((-1)^((n+k)/2+k))*binomial((n+k)/2, k); T(n, k) = -T(n-2, k)+T(n-1, k-1), T(n, -1) := 0 =: T(-1, k), T(0, 0)=1, T(n, k)= 0 if n < k or n+k odd; g.f. k-th column: (1 / (1 + x^2)^(k + 1)) * x^k. - Michael Somos, Jun 24 2002
T(n,k) = binomial((n+k)/2, (n-k)/2)*cos(Pi*(n-k)/2)*(1+(-1)^(n-k))/2. - Paul Barry, Aug 28 2005
Sum_{k=0..n} T(n,k)^2 = A051286(n). - Philippe Deléham, Nov 21 2005
Recurrence for the (unsigned) Fibonacci polynomials: F(1)=1, F(2)=x; for n > 2, F(n) = x*F(n-1) + F(n-2).
From Wolfdieter Lang, Nov 04 2011: (Start)
The Riordan A- and Z-sequences, given in a comment above, lead together to the recurrence:
T(n,k) = 0 if n < k, if k=0 then T(0,0)=1 and
T(n,0)= -Sum_{i=0..floor((n-1)/2)} C(i)*T(n-1,2*i+1), otherwise T(n,k) = T(n-1,k-1) - Sum_{i=1..floor((n-k)/2)} C(i)*T(n-1,k-1+2*i), with the Catalan numbers C(n)=A000108(n).
(End)
The row polynomials satisfy also S(n,x) = 2*(T(n+2, x/2) - T(n, x/2))/(x^2-4) with the Chebyshev T-polynomials. Proof: Use the trace formula 2*T(n, x/2) = S(n, x) - S(n-2, x) (see the Dec 02 2010 comment above) and the S-recurrence several times. This is a formula which expresses the S- in terms of the T-polynomials. - Wolfdieter Lang, Aug 07 2014
From Tom Copeland, Dec 06 2015: (Start)
The non-vanishing, unsigned subdiagonals Diag_(2n) contain the elements D(n,k) = Sum_{j=0..k} D(n-1,j) = (k+1) (k+2) ... (k+n) / n! = binomial(n+k,n), so the o.g.f. for the subdiagonal is (1-x)^(-(n+1)). E.g., Diag_4 contains D(2,3) = D(1,0) + D(1,1) + D(1,2) + D(1,3) = 1 + 2 + 3 + 4 = 10 = binomial(5,2). Diag_4 is shifted A000217; Diag_6, shifted A000292: Diag_8, shifted A000332; and Diag_10, A000389.
The non-vanishing antidiagonals are signed rows of the Pascal triangle A007318.
For a reversed, unsigned version with the zeros removed, see A011973. (End)
The Boas-Buck recurrence (see a comment above) for the sequence of column k is: S(n, k) = ((k+1)/(n-k))*Sum_{p=0..n-1-k} (1 - (-1)^p)*(-1)^((p+1)/2) * S(n-1-p, k), for n > k >= 0 and input S(k, k) = 1. - Wolfdieter Lang, Aug 11 2017
The m-th row consecutive nonzero entries in order are (-1)^c*(c+b)!/c!b! with c = m/2, m/2-1, ..., 0 and b = m-2c if m is even and with c = (m-1)/2, (m-1)/2-1, ..., 0 with b = m-2c if m is odd. For the 8th row starting at a(36) the 5 consecutive nonzero entries in order are 1,-10,15,-7,1 given by c = 4,3,2,1,0 and b = 0,2,4,6,8. - Richard Turk, Aug 20 2017
O.g.f.: exp( Sum_{n >= 0} 2*T(n,x/2)*t^n/n ) = 1 + x*t + (-1 + x^2)*t^2 + (-2*x + x^3)*t^3 + (1 - 3*x^2 + x^4)*t^4 + ..., where T(n,x) denotes the n-th Chebyshev polynomial of the first kind. - Peter Bala, Aug 15 2022

A048272 Number of odd divisors of n minus number of even divisors of n.

Original entry on oeis.org

1, 0, 2, -1, 2, 0, 2, -2, 3, 0, 2, -2, 2, 0, 4, -3, 2, 0, 2, -2, 4, 0, 2, -4, 3, 0, 4, -2, 2, 0, 2, -4, 4, 0, 4, -3, 2, 0, 4, -4, 2, 0, 2, -2, 6, 0, 2, -6, 3, 0, 4, -2, 2, 0, 4, -4, 4, 0, 2, -4, 2, 0, 6, -5, 4, 0, 2, -2, 4, 0, 2, -6, 2, 0, 6, -2, 4, 0, 2, -6, 5, 0, 2, -4, 4, 0, 4, -4, 2, 0, 4, -2, 4
Offset: 1

Views

Author

Keywords

Comments

abs(a(n)) = (1/2) * (number of pairs (i,j) satisfying n = i^2 - j^2 and -n <= i,j <= n). - Benoit Cloitre, Jun 14 2003
As A001227(n) is the number of ways to write n as the difference of 3-gonal numbers, a(n) describes the number of ways to write n as the difference of e-gonal numbers for e in {0,1,4,8}. If pe(n):=(1/2)*n*((e-2)*n+(4-e)) is the n-th e-gonal number, then 4*a(n) = |{(m,k) of Z X Z; pe(-1)(m+k)-pe(m-1)=n}| for e=1, 2*a(n) = |{(m,k) of Z X Z; pe(-1)(m+k)-pe(m-1)=n}| for e in {0,4} and for a(n) itself is a(n) = |{(m,k) of Z X Z; pe(-1)(m+k)-pe(m-1)=n}| for e=8. (Same for e=-1 see A035218.) - Volker Schmitt (clamsi(AT)gmx.net), Nov 09 2004
An argument by Gareth McCaughan suggests that the average of this sequence is log(2). - Hans Havermann, Feb 10 2013 [Supported by a graph. - Vaclav Kotesovec, Mar 01 2023]
From Keith F. Lynch, Jan 20 2024: (Start)
a(n) takes every possible integer value, positive, negative, and zero. Proof: For all nonnegative integers k, a(3^k) = 1+k, a(2^k) = 1-k.
a(n) takes every possible integer value except 1 and -1 infinitely many times. Proof: a(o^(k-1)) = k and a(4*o^(k-1)) = -k for all positive integers k and odd primes o, of which there are infinitely many. a(n) = 0 iff n = 2 (mod 4). a(n) = 1 iff n = 1. a(n) = -1 iff n = 4.
a(n) takes prime value p only for n = o^(p-1), where o is any odd prime.
Terms have a simple pattern that repeats with a period of 4: Positive, zero, positive, negative.
(End)
Inverse Möbius transform of (-1)^(n+1). - Wesley Ivan Hurt, Jun 22 2024

Examples

			a(20) = -2 because 20 = 2^2*5^1 and (1-2)*(1+1) = -2.
G.f. = x + 2*x^3 - x^4 + 2*x^5 + 2*x^7 - 2*x^8 + 3*x^9 + 2*x^11 - 2*x^12 + ...
		

References

  • Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 162, #16, (6), first formula.
  • S. Ramanujan, Notebooks, Tata Institute of Fundamental Research, Bombay 1957 Vol. 1, see page 97, 7(ii).

Crossrefs

Cf. A048298. A diagonal of A060184.
First differences of A059851.
Indices of records: A053624 (highs), A369151 (lows).

Programs

  • Haskell
    a048272 n = a001227 n - a183063 n  -- Reinhard Zumkeller, Jan 21 2012
    
  • Magma
    [&+[(-1)^(d+1):d in Divisors(n)] :n in [1..95] ]; // Marius A. Burtea, Aug 10 2019
  • Maple
    add(x^n/(1+x^n), n=1..60): series(%,x,59);
    A048272 := proc(n)
        local a;
        a := 1 ;
        for pfac in ifactors(n)[2] do
            if pfac[1] = 2 then
                a := a*(1-pfac[2]) ;
            else
                a := a*(pfac[2]+1) ;
            end if;
        end do:
        a ;
    end proc: # Schmitt, sign corrected R. J. Mathar, Jun 18 2016
    # alternative Maple program:
    a:= n-> -add((-1)^d, d=numtheory[divisors](n)):
    seq(a(n), n=1..100);  # Alois P. Heinz, Feb 28 2018
  • Mathematica
    Rest[ CoefficientList[ Series[ Sum[x^k/(1 - (-x)^k), {k, 111}], {x, 0, 110}], x]] (* Robert G. Wilson v, Sep 20 2005 *)
    dif[n_]:=Module[{divs=Divisors[n]},Count[divs,?OddQ]-Count[ divs, ?EvenQ]]; Array[dif,100] (* Harvey P. Dale, Aug 21 2011 *)
    a[n]:=Sum[-(-1)^d,{d,Divisors[n]}] (* Steven Foster Clark, May 04 2018 *)
    f[p_, e_] := If[p == 2, 1 - e, 1 + e]; a[n_] := Times @@ f @@@ FactorInteger[n]; a[1] = 1; Array[a, 100] (* Amiram Eldar, Jun 09 2022 *)
  • PARI
    {a(n) = if( n<1, 0, -sumdiv(n, d, (-1)^d))}; /* Michael Somos, Jul 22 2006 */
    
  • PARI
    N=17; default(seriesprecision,N); x=z+O(z^(N+1))
    c=sum(j=1,N,j*x^j); \\ log case
    s=-log(prod(j=1,N,(1+x^j)^(1/j)));
    s=serconvol(s,c)
    v=Vec(s) \\ Joerg Arndt, May 03 2008
    
  • PARI
    a(n)=my(o=valuation(n,2),f=factor(n>>o)[,2]);(1-o)*prod(i=1,#f,f[i]+1) \\ Charles R Greathouse IV, Feb 10 2013
    
  • PARI
    a(n)=direuler(p=1,n,if(p==2,(1-2*X)/(1-X)^2,1/(1-X)^2))[n] /* Ralf Stephan, Mar 27 2015 */
    
  • PARI
    {a(n) = my(d = n -> if(frac(n), 0, numdiv(n))); if( n<1, 0, if( n%4, 1, -1) * (d(n) - 2*d(n/2) + 2*d(n/4)))}; /* Michael Somos, Aug 11 2017 */
    

Formula

Coefficients in expansion of Sum_{n >= 1} x^n/(1+x^n) = Sum_{n >= 1} (-1)^(n-1)*x^n/(1-x^n). Expand Sum 1/(1+x^n) in powers of 1/x.
If n = 2^p1*3^p2*5^p3*7^p4*11^p5*..., a(n) = (1-p1)*Product_{i>=2} (1+p_i).
Multiplicative with a(2^e) = 1 - e and a(p^e) = 1 + e if p > 2. - Vladeta Jovovic, Jan 27 2002
a(n) = (-1)*Sum_{d|n} (-1)^d. - Benoit Cloitre, May 12 2003
Moebius transform is period 2 sequence [1, -1, ...]. - Michael Somos, Jul 22 2006
G.f.: Sum_{k>0} -(-1)^k * x^(k^2) * (1 + x^(2*k)) / (1 - x^(2*k)) [Ramanujan]. - Michael Somos, Jul 22 2006
Equals A051731 * [1, -1, 1, -1, 1, ...]. - Gary W. Adamson, Nov 07 2007
From Reinhard Zumkeller, Jan 21 2012: (Start)
a(n) = A001227(n) - A183063(n).
a(A008586(n)) < 0; a(A005843(n)) <= 0; a(A016825(n)) = 0; a(A042968(n)) >= 0; a(A005408(n)) > 0. (End)
a(n) = Sum_{k=0..n} A081362(k)*A015723(n-k). - Mircea Merca, Feb 26 2014
abs(a(n)) = A112329(n) = A094572(n) / 2. - Ray Chandler, Aug 23 2014
From Peter Bala, Jan 07 2015: (Start)
Logarithmic g.f.: log( Product_{n >= 1} (1 + x^n)^(1/n) ) = Sum_{n >= 1} a(n)*x^n/n.
a(n) = A001227(n) - A183063(n). By considering the logarithmic generating functions of these three sequences we obtain the identity
( Product_{n >= 0} (1 - x^(2*n+1))^(1/(2*n+1)) )^2 = Product_{n >= 1} ( (1 - x^n)/(1 + x^n) )^(1/n). (End)
Dirichlet g.f.: zeta(s)*eta(s) = zeta(s)^2*(1-2^(-s+1)). - Ralf Stephan, Mar 27 2015
a(2*n - 1) = A099774(n). - Michael Somos, Aug 12 2017
From Paul D. Hanna, Aug 10 2019: (Start)
G.f.: Sum_{n>=0} x^n * Sum_{k=0..n} binomial(n,k) * (x^(n+1) - x^k)^(n-k) = Sum_{n>=0} a(n)*x^(2*n).
G.f.: Sum_{n>=0} x^n * Sum_{k=0..n} binomial(n,k) * (x^(n+1) + x^k)^(n-k) * (-1)^k = Sum_{n>=0} a(n)*x^(2*n). (End)
a(n) = 2*A000005(2n) - 3*A000005(n). - Ridouane Oudra, Oct 15 2019
Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A000005(k) = 2*log(2)-1. - Amiram Eldar, Mar 01 2023

Extensions

New definition from Vladeta Jovovic, Jan 27 2002

A008438 Sum of divisors of 2*n + 1.

Original entry on oeis.org

1, 4, 6, 8, 13, 12, 14, 24, 18, 20, 32, 24, 31, 40, 30, 32, 48, 48, 38, 56, 42, 44, 78, 48, 57, 72, 54, 72, 80, 60, 62, 104, 84, 68, 96, 72, 74, 124, 96, 80, 121, 84, 108, 120, 90, 112, 128, 120, 98, 156, 102, 104, 192, 108, 110, 152, 114, 144, 182, 144, 133, 168
Offset: 0

Views

Author

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Number of ways of writing n as the sum of 4 triangular numbers.
Bisection of A000203. - Omar E. Pol, Mar 14 2012
a(n) is also the total number of parts in all partitions of 2*n + 1 into equal parts. - Omar E. Pol, Feb 14 2021

Examples

			Divisors of 9 are 1,3,9, so a(4)=1+3+9=13.
F_2(z) = eta(4z)^8/eta(2z)^4 = q + 4q^3 + 6q^5 +8q^7 + 13q^9 + ...
G.f. = 1 + 4*x + 6*x^2 + 8*x^3 + 13*x^4 + 12*x^5 + 14*x^6 + 24*x^7 + 18*x^8 + 20*x^9 + ...
B(q) = q + 4*q^3 + 6*q^5 + 8*q^7 + 13*q^9 + 12*q^11 + 14*q^13 + 24*q^15 + 18*q^17 + ...
		

References

  • B. C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag, see p. 139 Ex. (iii).
  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 102.
  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 19 eq. (6), and p. 283 eq. (8).
  • W. Dunham, Euler: The Master of Us All, The Mathematical Association of America Inc., Washington, D.C., 1999, p. 12.
  • H. M. Farkas, I. Kra, Cosines and triangular numbers, Rev. Roumaine Math. Pures Appl., 46 (2001), 37-43.
  • N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 79, Eq. (32.31).
  • N. Koblitz, Introduction to Elliptic Curves and Modular Forms, Springer-Verlag, 1984, see p. 184, Prop. 4, F(z).
  • G. Polya, Induction and Analogy in Mathematics, vol. 1 of Mathematics and Plausible Reasoning, Princeton Univ. Press, 1954, page 92 ff.

Crossrefs

Number of ways of writing n as a sum of k triangular numbers, for k=1,...: A010054, A008441, A008443, A008438, A008439, A008440, A226252, A007331, A226253, A226254, A226255, A014787, A014809.

Programs

  • Haskell
    a008438 = a000203 . a005408  -- Reinhard Zumkeller, Sep 22 2014
    
  • Magma
    Basis( ModularForms( Gamma0(4), 2), 124) [2]; /* Michael Somos, Jun 12 2014 */
    
  • Magma
    [DivisorSigma(1, 2*n+1): n in [0..70]]; // Vincenzo Librandi, Aug 01 2017
  • Maple
    A008438 := proc(n) numtheory[sigma](2*n+1) ; end proc: # R. J. Mathar, Mar 23 2011
  • Mathematica
    DivisorSigma[1, 2 # + 1] & /@ Range[0, 61] (* Ant King, Dec 02 2010 *)
    a[ n_] := SeriesCoefficient[ D[ Series[ Log[ QPochhammer[ -x] / QPochhammer[ x]], {x, 0, 2 n + 1}], x], {x, 0 , 2n}]; (* Michael Somos, Oct 15 2019 *)
  • PARI
    {a(n) = if( n<0, 0, sigma( 2*n + 1))};
    
  • PARI
    {a(n) = if( n<0, 0, n = 2*n; polcoeff( sum( k=1, (sqrtint( 4*n + 1) + 1)\2, x^(k^2 - k), x * O(x^n))^4, n))}; /* Michael Somos, Sep 17 2004 */
    
  • PARI
    {a(n) = my(A); if( n<0, 0, n = 2*n; A = x * O(x^n); polcoeff( (eta(x^4 + A)^2 / eta(x^2 + A))^4, n))}; /* Michael Somos, Sep 17 2004 */
    
  • Sage
    ModularForms( Gamma0(4), 2, prec=124).1;  # Michael Somos, Jun 12 2014
    

Formula

Expansion of q^(-1/2) * (eta(q^2)^2 / eta(q))^4 = psi(q)^4 in powers of q where psi() is a Ramanujan theta function. - Michael Somos, Apr 11 2004
Expansion of Jacobi theta_2(q)^4 / (16*q) in powers of q^2. - Michael Somos, Apr 11 2004
Euler transform of period 2 sequence [4, -4, 4, -4, ...]. - Michael Somos, Apr 11 2004
a(n) = b(2*n + 1) where b() is multiplicative and b(2^e) = 0^n, b(p^e) =(p^(e+1) - 1) / (p - 1) if p>2. - Michael Somos, Jul 07 2004
Given g.f. A(x), then B(q) = q * A(q^2) satisfies 0 = f(B(q), B(q^2), B(q^4)) where f(u, v, w) = v^3 + 8*w*v^2 + 16*w^2*v - u^2*w - Michael Somos, Apr 08 2005
Given g.f. A(x), then B(q) = q * A(q^2) satisfies 0 = f(B(q), B(q^3), B(q^9)) where f(u, v, w) = v^4 - 30*u*v^2*w + 12*u*v*w*(u + 9*w) - u*w*(u^2 + 9*w*u + 81*w^2).
Given g.f. A(x), then B(q) = q * A(q^2) satisfies 0 = f(B(q), B(q^2), B(q^3), B(q^6)) where f(u1, u2, u3, u6) = u2^3 + u1^2*u6 + 3*u2*u3^2 + 27*u6^3 - u1*u2*u3 - 3*u1*u3*u6 - 7*u2^2*u6 - 21*u2*u6^2. - Michael Somos, May 30 2005
G.f.: Sum_{k>=0} (2k + 1) * x^k / (1 - x^(2k + 1)).
G.f.: (Product_{k>0} (1 - x^k) * (1 + x^k)^2)^4. - Michael Somos, Apr 11 2004
G.f. Sum_{k>=0} a(k) * x^(2*k + 1) = x * (Product_{k>0} (1 - x^(4*k))^2 / (1 - x^(2*k)))^4 = x * (Sum_{k>0} x^(k^2 - k))^4 = Sum_{k>0} k * (x^k / (1 - x^k) - 3 * x^(2*k) / (1 - x^(2*k)) + 2 * x^(4*k) / (1 - x^(4*k))). - Michael Somos, Jul 07 2004
Number of solutions of 2*n + 1 = (x^2 + y^2 + z^2 + w^2) / 4 in positive odd integers. - Michael Somos, Apr 11 2004
8 * a(n) = A005879(n) = A000118(2*n + 1). 16 * a(n) = A129588(n). a(n) = A000593(2*n + 1) = A115607(2*n + 1).
a(n) = A000203(2*n+1). - Omar E. Pol, Mar 14 2012
G.f. is a period 1 Fourier series which satisfies f(-1 / (4 t)) = (1/4) (t/i)^2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A096727. Michael Somos, Jun 12 2014
a(0) = 1, a(n) = (4/n)*Sum_{k=1..n} A002129(k)*a(n-k) for n > 0. - Seiichi Manyama, May 06 2017
G.f.: exp(Sum_{k>=1} 4*(x^k/k)/(1 + x^k)). - Ilya Gutkovskiy, Jul 31 2017
From Peter Bala, Jan 10 2021: (Start)
a(n) = A002131(2*n+1).
G.f.: Sum_{n >= 0} x^n*(1 + x^(2*n+1))/(1 - x^(2*n+1))^2. (End)
Sum_{k=1..n} a(k) ~ Pi^2 * n^2 / 8. - Vaclav Kotesovec, Aug 07 2022
Convolution of A125061 and A138741. - Michael Somos, Mar 04 2023

Extensions

Comments from Len Smiley, Enoch Haga

A099777 Number of divisors of 2n.

Original entry on oeis.org

2, 3, 4, 4, 4, 6, 4, 5, 6, 6, 4, 8, 4, 6, 8, 6, 4, 9, 4, 8, 8, 6, 4, 10, 6, 6, 8, 8, 4, 12, 4, 7, 8, 6, 8, 12, 4, 6, 8, 10, 4, 12, 4, 8, 12, 6, 4, 12, 6, 9, 8, 8, 4, 12, 8, 10, 8, 6, 4, 16, 4, 6, 12, 8, 8, 12, 4, 8, 8, 12, 4, 15, 4, 6, 12, 8, 8, 12, 4, 12, 10, 6, 4, 16, 8, 6, 8, 10, 4, 18, 8, 8, 8, 6, 8
Offset: 1

Views

Author

N. J. A. Sloane, Nov 19 2004

Keywords

Examples

			a(7) = 4 because the divisors of 14 are: 1, 2, 7 and 14.
		

Crossrefs

Bisection of A000005.

Programs

Formula

Moebius transform is period 2 sequence [2, 1, ...]. - Michael Somos, Sep 20 2005
G.f.: Sum_{k>0} x^k(2+x^k)/(1-x^(2k)) = Sum_{k>0} 2*x^(2k-1)/(1-x^(2k-1))+x^(2k)/(1-x^(2k)). - Michael Somos, Sep 20 2005
a(n) = A000005(n) + A001227(n). - Matthew Vandermast, Sep 30 2014
Sum_{k=1..n} a(k) ~ n/2 * (3*log(n) + log(2) + 6*gamma - 3), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Feb 13 2019
From Bernard Schott, Sep 14 2020: (Start)
a(n) = 2 iff n = 1;
a(n) = prime(m) iff n = 2^(prime(m)-2);
a(n) = 4 iff n = 4 or n is an odd prime (A065091);
a(n) = 6 iff n = 16, or n = 2p for p an odd prime (A100484 \ {4}), or n = p^2 for p an odd prime (A001248 \ {4});
a(n) = 2*A000005(n) iff n is odd. (End)
Dirichlet g.f.: zeta(s)^2 * (2 - 1/2^s). - Amiram Eldar, Jun 08 2025

Extensions

More terms from Emeric Deutsch, Dec 03 2004

A137921 Number of divisors d of n such that d+1 is not a divisor of n.

Original entry on oeis.org

1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 2, 3, 2, 3, 4, 4, 2, 4, 2, 4, 4, 3, 2, 5, 3, 3, 4, 5, 2, 5, 2, 5, 4, 3, 4, 6, 2, 3, 4, 6, 2, 5, 2, 5, 6, 3, 2, 7, 3, 5, 4, 5, 2, 6, 4, 6, 4, 3, 2, 7, 2, 3, 6, 6, 4, 6, 2, 5, 4, 7, 2, 8, 2, 3, 6, 5, 4, 6, 2, 8, 5, 3, 2, 8, 4, 3, 4, 7, 2, 8, 4, 5, 4, 3, 4, 9, 2, 5, 6, 7, 2, 6, 2, 7, 8
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 23 2008

Keywords

Comments

a(n) = number of "divisor islands" of n. A divisor island is any set of consecutive divisors of a number where no pairs of consecutive divisors in the set are separated by 2 or more. - Leroy Quet, Feb 07 2010

Examples

			The divisors of 30 are 1,2,3,5,6,10,15,30. The divisor islands are (1,2,3), (5,6), (10), (15), (30). (Note that the differences between consecutive divisors 5-3, 10-6, 15-10 and 30-15 are all > 1.) There are 5 such islands, so a(30)=5.
		

Crossrefs

Bisections: A099774, A174199.
First appearance of n is at position A173569(n).
Numbers whose divisors have no non-singleton runs are A005408.
The longest run of divisors of n has length A055874(n).
The number of successive pairs of divisors of n is A129308(n).

Programs

  • Haskell
    a137921 n = length $ filter (> 0) $
       map ((mod n) . (+ 1)) [d | d <- [1..n], mod n d == 0]
    -- Reinhard Zumkeller, Nov 23 2011
    
  • Maple
    with(numtheory): disl := proc (b) local ct, j: ct := 1: for j to nops(b)-1 do if 2 <= b[j+1]-b[j] then ct := ct+1 else end if end do: ct end proc: seq(disl(divisors(n)), n = 1 .. 120); # Emeric Deutsch, Feb 12 2010
  • Mathematica
    f[n_] := Length@ Split[ Divisors@n, #2 - #1 == 1 &]; Array[f, 105] (* f(n) from Bobby R. Treat *) (* Robert G. Wilson v, Feb 22 2010 *)
    Table[Count[Differences[Divisors[n]],?(#>1&)]+1,{n,110}] (* _Harvey P. Dale, Jun 05 2012 *)
    a[n_] := DivisorSum[n, Boole[!Divisible[n, #+1]]&]; Array[a, 100] (* Jean-François Alcover, Dec 01 2015 *)
  • PARI
    a(n)=my(d,s=0);if(n%2,numdiv(n),d=divisors(n);for(i=1,#d,if(n%(d[i]+1),s++));s)
    
  • PARI
    a(n)=sumdiv(n,d,(n%(d+1)!=0)); \\ Joerg Arndt, Jan 06 2015
    
  • Python
    from sympy import divisors
    def A137921(n):
        return len([d for d in divisors(n,generator=True) if n % (d+1)])
    # Chai Wah Wu, Jan 05 2015

Formula

a(n) <= A000005(n), with equality iff n is odd; a(A137922(n)) = 2.
a(n) = A000005(n) - A129308(n). - Michel Marcus, Jan 06 2015
a(n) = A001222(A328166(n)). - Gus Wiseman, Oct 16 2019
Sum_{k=1..n} a(k) ~ n * (log(n) + 2*gamma - 2), where gamma is Euler's constant (A001620). - Amiram Eldar, Jan 18 2024

Extensions

Corrected and edited by Charles R Greathouse IV, Apr 19 2010
Edited by N. J. A. Sloane, Aug 10 2010

A278223 Least number with the same prime signature as the n-th odd number: a(n) = A046523(2n-1).

Original entry on oeis.org

1, 2, 2, 2, 4, 2, 2, 6, 2, 2, 6, 2, 4, 8, 2, 2, 6, 6, 2, 6, 2, 2, 12, 2, 4, 6, 2, 6, 6, 2, 2, 12, 6, 2, 6, 2, 2, 12, 6, 2, 16, 2, 6, 6, 2, 6, 6, 6, 2, 12, 2, 2, 30, 2, 2, 6, 2, 6, 12, 6, 4, 6, 8, 2, 6, 2, 6, 24, 2, 2, 6, 6, 6, 12, 2, 2, 12, 6, 2, 6, 6, 2, 30, 2, 4, 12, 2, 12, 6, 2, 2, 6, 6, 6, 24, 2, 2, 30, 2, 2, 6, 6, 6, 12, 6, 2, 6, 6, 6, 6, 6, 2, 36, 2, 2
Offset: 1

Views

Author

Antti Karttunen, Nov 16 2016

Keywords

Comments

This sequence works as a filter for sequences related to the prime factorization of odd numbers by matching to any sequence that is obtained as f(2*n - 1), where f(n) is any function that depends only on the prime signature of n (see the index entry for "sequences computed from exponents in ..."). The last line in Crossrefs section lists such sequences that were present in the database as of Nov 11 2016, although some of the matches might be spurious.

Crossrefs

Odd bisection of A046523.
Sequences that partition or seem to partition N into same or coarser equivalence classes: A099774, A100007, A193773, A101871, A158280, A158315, A158647, A285716.

Programs

  • Mathematica
    a[n_] := Times @@ (Prime[Range[Length[f = FactorInteger[2*n - 1]]]]^Sort[f[[;; , 2]], Greater]); a[1] = 1; Array[a, 100] (* Amiram Eldar, Jul 23 2023 *)
  • Python
    from sympy import factorint
    def P(n):
        f = factorint(n)
        return sorted([f[i] for i in f])
    def a046523(n):
        x=1
        while True:
            if P(n) == P(x): return x
            else: x+=1
    def a(n): return a046523(2*n - 1) # Indranil Ghosh, May 11 2017
    
  • Python
    from math import prod
    from sympy import prime, factorint
    def A278223(n): return prod(prime(i+1)**e for i,e in enumerate(sorted(factorint((n<<1)-1).values(),reverse=True))) # Chai Wah Wu, Sep 16 2022
  • Scheme
    (define (A278223 n) (A046523 (+ n n -1)))
    (define (A278223 n) (A046523 (A064216 n)))
    

Formula

a(n) = A046523(2n - 1).
a(n) = A046523(A064216(n)).
From Antti Karttunen, May 31 2017: (Start)
a(n) = A278222(A244153(n)).
a(n) = A278531(A245611(n)).
(End)

A112329 Number of divisors of n if n odd, number of divisors of n/4 if n divisible by 4, otherwise 0.

Original entry on oeis.org

1, 0, 2, 1, 2, 0, 2, 2, 3, 0, 2, 2, 2, 0, 4, 3, 2, 0, 2, 2, 4, 0, 2, 4, 3, 0, 4, 2, 2, 0, 2, 4, 4, 0, 4, 3, 2, 0, 4, 4, 2, 0, 2, 2, 6, 0, 2, 6, 3, 0, 4, 2, 2, 0, 4, 4, 4, 0, 2, 4, 2, 0, 6, 5, 4, 0, 2, 2, 4, 0, 2, 6, 2, 0, 6, 2, 4, 0, 2, 6, 5, 0, 2, 4, 4, 0, 4, 4, 2, 0, 4, 2, 4, 0, 4, 8, 2, 0, 6, 3, 2, 0, 2, 4, 8
Offset: 1

Views

Author

Michael Somos, Sep 04 2005

Keywords

Comments

First occurrence of k: 2, 1, 3, 9, 15, 64, 45, 256, 96, 144, 192, 4096, 240, ????, 768, 576, 480, ????, 720, ..., . See A246063. - Robert G. Wilson v, Oct 31 2013
a(n) is the number of pairs (u, v) in NxZ satisfying u^2-v^2=n. See Kühleitner. - Michel Marcus, Jul 30 2017
The g.f. in the form Sum_{k >= 1} x^(k^2) * (1 + x^(2*k))/(1 - x^(2*k)) = Sum_{k >= 1} x^(k^2) * (1 + x^(2*k))/(1 + x^(2*k) - 2*x^(2*k)) == Sum_{k >= 1} x^(k^2) (mod 2). It follows that a(n) is odd iff n = k^2 for some positive integer k. - Peter Bala, Jan 08 2025

Examples

			x + 2*x^3 + x^4 + 2*x^5 + 2*x^7 + 2*x^8 + 3*x^9 + 2*x^11 + 2*x^12 + ...
		

References

  • G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, AMS Chelsea Publishing, Providence, Rhode Island, 2002, p. 142.

Crossrefs

Programs

  • Maple
    f:= proc(n) if n::odd then numtheory:-tau(n) elif n mod 4 = 0 then numtheory:-tau(n/4) else 0 fi end proc;
    seq(f(i),i=1..100); # Robert Israel, Aug 24 2014
  • Mathematica
    Rest[ CoefficientList[ Series[ Sum[x^k/(1 - (-x)^k), {k, 111}], {x, 0, 110}], x]] (* Robert G. Wilson v, Sep 20 2005 *)
    Table[If[OddQ[n],DivisorSigma[0,n],If[OddQ[n/2],0,DivisorSigma[0,n/4]]],{n,100} ] (* Ray Chandler, Aug 23 2014 *)
  • PARI
    {a(n) = if( n<1, 0, (-1)^n * sumdiv( n, d, (-1)^d))}
    
  • PARI
    {a(n) = if( n<1, 0, if( n%2, numdiv(n), if( n%4, 0, numdiv(n/4))))} /* Michael Somos, Sep 02 2006 */
    
  • PARI
    d(n) = if (denominator(n)==1, numdiv(n), 0);
    a(n) = numdiv(n) - 2*d(n/2) + 2*d(n/4); \\ Michel Marcus, Jul 30 2017

Formula

Multiplicative with a(2^e) = e-1 if e>0, a(p^e) = 1+e if p>2.
G.f.: Sum_{k>0} x^k / (1 - (-x)^k) = Sum_{k>0} -(-x)^k / (1 + (-x)^k).
Möbius transform is period 4 sequence [ 1, -1, 1, 1, ...].
G.f.: Sum_{k>=1} x^(k^2) * (1+x^(2*k))/(1-x^(2*k)). - Joerg Arndt, Nov 08 2010
a(4*n + 2) = 0. a(n) = -(-1)^n * A048272(n). a(2*n - 1) = A099774(n). a(4*n) = A000005(n). a(4*n + 1) = A000005(4*n + 1). a(4*n - 1) = 2 * A078703(n).
a(n) = A094572(n) / 2. - Ray Chandler, Aug 23 2014
Bisection: a(2*k-1) = A000005(2*k-1), a(2*k) = A183063(2*k) - A001227(2*k), k >= 1. See the Hardy reference, p. 142 where a(n) = sigma^*0(n). - _Wolfdieter Lang, Jan 07 2017
a(n) = d(n) - 2*d(n/2) + 2*d(n/4) where d(n) = 0 if n is not an integer. See Kühleitner.
a(n) = Sum_{d|n} [(d mod 2) = (n/d mod 2)], where [ ] is the Iverson bracket. - Wesley Ivan Hurt, Mar 21 2022
From Amiram Eldar, Nov 29 2022: (Start)
Dirichlet g.f.: zeta(s)^2*(1 + 2^(1-2*s) - 2^(1-s)).
Sum_{k=1..n} a(k) ~ n*log(n)/2 + (2*gamma-1)*n/2, where gamma is Euler's constant (A001620). (End)
a(n) = (-1)^n * Sum_{d|2*n} cos(d*Pi/2). - Ridouane Oudra, Sep 27 2024

A359233 Number of divisors of 5*n-1 of form 5*k+1.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 2, 2, 1, 2, 1, 2, 1, 1, 1, 4, 1, 2, 1, 2, 1, 2, 1, 2, 2, 1, 1, 3, 2, 1, 1, 3, 1, 3, 1, 2, 1, 1, 1, 4, 1, 1, 2, 2, 1, 3, 1, 3, 1, 1, 2, 4, 1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 4, 1, 1, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1
Offset: 1

Views

Author

Seiichi Manyama, Dec 22 2022

Keywords

Comments

Also number of divisors of 5*n-1 of form 5*k+4.

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[5*n-1, 1 &, Mod[#, 5] == 1 &]; Array[a, 100] (* Amiram Eldar, Aug 23 2023 *)
  • PARI
    a(n) = sumdiv(5*n-1, d, d%5==1);
    
  • PARI
    a(n) = sumdiv(5*n-1, d, d%5==4);
    
  • PARI
    my(N=100, x='x+O('x^N)); Vec(sum(k=1, N, x^k/(1-x^(5*k-1))))
    
  • PARI
    my(N=100, x='x+O('x^N)); Vec(sum(k=1, N, x^(4*k-3)/(1-x^(5*k-4))))

Formula

a(n) = A001876(5*n-1) = A001899(5*n-1).
G.f.: Sum_{k>0} x^k/(1 - x^(5*k-1)).
G.f.: Sum_{k>0} x^(4*k-3)/(1 - x^(5*k-4)).

A069735 Number of regular orientable coverings of the Klein bottle with 2n lists.

Original entry on oeis.org

1, 3, 2, 5, 2, 6, 2, 7, 3, 6, 2, 10, 2, 6, 4, 9, 2, 9, 2, 10, 4, 6, 2, 14, 3, 6, 4, 10, 2, 12, 2, 11, 4, 6, 4, 15, 2, 6, 4, 14, 2, 12, 2, 10, 6, 6, 2, 18, 3, 9, 4, 10, 2, 12, 4, 14, 4, 6, 2, 20, 2, 6, 6, 13, 4, 12, 2, 10, 4, 12, 2, 21, 2, 6, 6, 10, 4, 12, 2, 18, 5, 6, 2, 20, 4, 6, 4, 14, 2, 18
Offset: 1

Views

Author

Valery A. Liskovets, Apr 07 2002

Keywords

Comments

Dirichlet convolution of A000012 by A040001. - R. J. Mathar, Mar 30 2011
a(n) is the number of full-dimensional lattices with volume n in Z^2 which are symmetric about a coordinate axis (equivalently, about both). - Álvar Ibeas, Mar 19 2021

Examples

			x + 3*x^2 + 2*x^3 + 5*x^4 + 2*x^5 + 6*x^6 + 2*x^7 + 7*x^8 + 3*x^9 + 6*x^10 + ...
		

Crossrefs

Equals row sums of triangle A143110. - Gary W. Adamson, Jul 25 2008

Programs

  • Maple
    read("transforms") : nmax := 100 :
    L := [1,1,seq(0,i=1..nmax)] :
    MOBIUSi(%) :
    MOBIUSi(%) ; # R. J. Mathar, Sep 25 2017
    with(NumberTheory): seq(tau(n) + `if`(n::odd, 0, tau(n/2)), n=1..100); # Peter Luschny, Mar 19 2021
  • Mathematica
    d[n_] := DivisorSigma[0, n];
    a[n_] := If[EvenQ[n], d[n] + d[n/2], d[n]];
    Array[a, 100] (* Jean-François Alcover, Aug 27 2019 *)
  • PARI
    {a(n) = if( n<1, 0, numdiv(n) + if( n%2, 0, numdiv( n / 2)))} /* Michael Somos, Mar 24 2012 */

Formula

Multiplicative with a(2^e)=2e+1 and a(p^e)=e+1 for e>0 and an odd prime p.
a(n) = d(n)+d(n/2) for even n and a(n) = d(n) otherwise where d(n) is the number of divisors of n (A000005).
G.f.: Sum_{k>0} x^k*(1+2*x^k)/(1-x^(2*k)). - Vladeta Jovovic, Dec 16 2002
Dirichlet g.f.: (1+2^(-s))*zeta^2(s) [ Rutherford]. - N. J. A. Sloane, Feb 23 2009
Moebius transform is period 2 sequence [ 1, 2, ...]. - Michael Somos, Mar 24 2012
a(2*n - 1) = A099774(n).
a(n) = Sum_{ m: m^2|n } A304182(n/m^2). - Andrey Zabolotskiy, May 07 2018
Sum_{k=1..n} a(k) ~ 3*n*log(n)/2 + (3*gamma - 3/2 - log(2)/2)*n, where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Oct 04 2019
a(n) = 3*tau(n) - tau(2*n). - Ridouane Oudra, Mar 15 2021
a(n) = A320111(n) + (A059841(n)*A000005(n)), i.e. a(n) = A320111(n) if n is odd, and a(n) = A320111(n) + A000005(n) if n is even. - Antti Karttunen, Mar 17 2021
a(n) = A000005(n) + A183063(n) = 2*A000005(n) - A001227(n). - Amiram Eldar, Dec 22 2023

Extensions

Corrected by T. D. Noe, Nov 13 2006
Showing 1-10 of 39 results. Next