cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A145393 Number of inequivalent sublattices of index n in square lattice, where two sublattices are considered equivalent if one can be rotated or reflected to give the other, with that rotation or reflection preserving the parent square lattice.

Original entry on oeis.org

1, 2, 2, 4, 3, 5, 3, 7, 5, 7, 4, 11, 5, 8, 8, 12, 6, 13, 6, 15, 10, 11, 7, 21, 10, 13, 12, 18, 9, 22, 9, 21, 14, 16, 14, 29, 11, 17, 16, 29, 12, 28, 12, 25, 23, 20, 13, 39, 16, 27, 20, 29, 15, 34, 20, 36, 22, 25, 16, 50, 17, 26, 29, 38, 24, 40, 18, 36, 26, 40
Offset: 1

Views

Author

N. J. A. Sloane, Feb 23 2009

Keywords

Comments

From Andrey Zabolotskiy, Mar 12 2018: (Start)
If reflections are not allowed, we get A145392. If any rotations and reflections are allowed, we get A054346.
The parent lattice of the sublattices under consideration has Patterson symmetry group p4mm, and two sublattices are considered equivalent if they are related via a symmetry from that group [Rutherford]. For other 2D Patterson groups, the analogous sequences are A000203 (p2), A069734 (p2mm), A145391 (c2mm), A145392 (p4), A145394 (p6), A003051 (p6mm).
Rutherford says at p. 161 that a(n) != A054346(n) only when A002654(n) > 2, but actually these two sequence differ at other terms, too, for example, at n = 30 (see illustration). (End)

Crossrefs

Programs

  • Mathematica
    terms = 70;
    CoefficientList[Sum[(1/((1-x^m)(1-x^(4m)))-1), {m, 1, terms}] + O[x]^(terms + 1), x] // Rest (* Jean-François Alcover, Aug 05 2018 *)

Formula

a(n) = (A000203(n) + A002654(n) + A069735(n) + A145390(n))/4. [Rutherford] - N. J. A. Sloane, Mar 13 2009
G.f.: Sum_{ m>=1 } (1/((1-x^m)(1-x^(4m))) - 1). [Hanany, Orlando & Reffert, eq. (6.8)] - Andrey Zabolotskiy, Jul 05 2017
a(n) = Sum_{ m: m^2|n } A019590(n/m^2) + A157228(n/m^2) + A157226(n/m^2) + A157230(n/m^2) + A157231(n/m^2) = A053866(n) + A025441(n) + Sum_{ m: m^2|n } A157226(n/m^2) + A157230(n/m^2) + A157231(n/m^2). [Rutherford] - Andrey Zabolotskiy, May 07 2018
a(n) = Sum_{ d|n } A008621(d) = Sum_{ d|n } (1 + floor(d/4)). [From the above-given g.f.] - Andrey Zabolotskiy, Jul 17 2019

Extensions

New name from Andrey Zabolotskiy, Mar 12 2018

A069734 Number of pairs (p,q), 0<=p<=q, such that p+q divides n.

Original entry on oeis.org

1, 3, 3, 6, 4, 9, 5, 11, 8, 12, 7, 19, 8, 15, 14, 20, 10, 24, 11, 26, 18, 21, 13, 37, 17, 24, 22, 33, 16, 42, 17, 37, 26, 30, 26, 53, 20, 33, 30, 52, 22, 54, 23, 47, 42, 39, 25, 71, 30, 51, 38, 54, 28, 66, 38, 67, 42, 48, 31, 94, 32, 51, 55, 70, 44, 78, 35, 68, 50, 78, 37, 108
Offset: 1

Views

Author

Valery A. Liskovets, Apr 07 2002

Keywords

Comments

Also number of orientable coverings of the Klein bottle with 2n lists (orientable m-list coverings exist only for even m).
Equals row sums of triangle A178650. - Gary W. Adamson, May 31 2010
Also number of inequivalent sublattices of index n of the rectangular lattice, that has the p2mm (pmm) symmetry group [Rutherford]. For other 2D Patterson groups, the analogous sequences are A000203 (p2), A145391 (c2mm), A145392 (p4), A145393 (p4mm), A145394 (p6), A003051 (p6mm). - Andrey Zabolotskiy, Mar 12 2018

Examples

			There are 9 pairs (p,q), 0<=p<=q, such that p+q divides 6: (0,1), (0,2), (0,3), (0,6), (1,1), (1, 2), (1, 5), (2, 4), (3, 3); thus a(6) = 9.
x + 3*x^2 + 3*x^3 + 6*x^4 + 4*x^5 + 9*x^6 + 5*x^7 + 11*x^8 + 8*x^9 + ...
		

Crossrefs

Programs

  • Maple
    with(numtheory): a := n -> (sigma(n) + tau(n) + `if`(irem(n,2) = 1, 0, tau(n/2)))/2: seq(a(n), n=1..72); # Peter Luschny, Jul 20 2019
  • Mathematica
    a[n_] := (DivisorSigma[1, n] + DivisorSigma[0, n] + If[OddQ[n], 0, DivisorSigma[0, n/2]])/2;
    Array[a, 72] (* Jean-François Alcover, Aug 27 2019, from Maple *)
  • PARI
    {a(n) = if( n<1, 0, sum( k=1, n, sum( j=0, k, n%(j+k) == 0)))} /* Michael Somos, Mar 24 2012 */

Formula

a(n) = A046524(2n) - A069733(2n).
Inverse Moebius transform of: 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, ... G.f.: Sum_{n>0} x^n*(1+x^n-x^(2*n))/(1-x^(2*n))/(1-x^n). - Vladeta Jovovic, Feb 03 2003
a(n) = (A000203(n) + A069735(n))/2. [Rutherford] - N. J. A. Sloane, Mar 13 2009
a(n) = Sum_{ m: m^2|n } A304182(n/m^2) + A304183(n/m^2) = A069735(n) + Sum_{ m: m^2|n } A304183(n/m^2). - Andrey Zabolotskiy, May 07 2018
a(n) = Sum_{ d|n } A008619(d) = Sum_{ d|n } (1 + floor(d/2)). - Andrey Zabolotskiy, Jul 20 2019
a(n) = (A007503(n) + A183063(n))/2. - Peter Luschny, Jul 20 2019

Extensions

New description from Vladeta Jovovic, Feb 03 2003

A304182 Number of primitive inequivalent mirror-symmetric sublattices of rectangular lattice of index n.

Original entry on oeis.org

1, 3, 2, 4, 2, 6, 2, 4, 2, 6, 2, 8, 2, 6, 4, 4, 2, 6, 2, 8, 4, 6, 2, 8, 2, 6, 2, 8, 2, 12, 2, 4, 4, 6, 4, 8, 2, 6, 4, 8, 2, 12, 2, 8, 4, 6, 2, 8, 2, 6, 4, 8, 2, 6, 4, 8, 4, 6, 2, 16, 2, 6, 4, 4, 4, 12, 2, 8, 4, 12, 2, 8, 2, 6, 4, 8, 4, 12, 2, 8, 2, 6, 2, 16, 4
Offset: 1

Views

Author

Andrey Zabolotskiy, May 07 2018

Keywords

Examples

			There are 6 = A001615(4) lattices in Z^2 whose quotient group is C_4. The reflection through an axis relates <(4,0), (1,1)> and <(4,0), (3,1)>. The remaining 4 = a(4) lattices are fixed.
		

Crossrefs

Cf. A069735 (not only primitive sublattices), A304183 (primitive oblique sublattices), A069734 (all sublattices).
Cf. other columns of tables 4 and 5 from [Rutherford, 2009]: A001615, A060594, A157223, A000089, A157224, A000086, A157227, A019590, A157228, A157226, A157230, A157231, A154272, A157235.

Programs

  • Mathematica
    f[p_, e_] := If[p == 2, If[e == 1, 3, 4], 2]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 22 2022 *)

Formula

From Álvar Ibeas, Mar 18 2021: (Start)
For n odd, a(n) = A034444(n) = 2^(A001221(n)).
For n even, a(n) = A034444(n) + A034444(n/2). If 4|n, a(n) = 2^(A001221(n) + 1); otherwise, a(n) = 3 * 2^(A001221(n) - 1).
Multiplicative with a(2) = 3, a(2^e) = 4 (for e>1), and a(p^e) = 2 (for p>2).
Dirichlet g.f.: (1+2^(-s)) * zeta(s)^2 / zeta(2s).
(End)
Sum_{k=1..n} a(k) ~ (log(n) + 2*gamma - log(2)/3 - 2*zeta'(2)/zeta(2) - 1)*9*n/Pi^2, where gamma is Euler's constant (A001620). - Amiram Eldar, Dec 31 2022

A145394 Number of inequivalent sublattices of index n in hexagonal lattice, where two sublattices are considered equivalent if one can be rotated by a multiple of Pi/3 to give the other.

Original entry on oeis.org

1, 1, 2, 3, 2, 4, 4, 5, 5, 6, 4, 10, 6, 8, 8, 11, 6, 13, 8, 14, 12, 12, 8, 20, 11, 14, 14, 20, 10, 24, 12, 21, 16, 18, 16, 31, 14, 20, 20, 30, 14, 32, 16, 28, 26, 24, 16, 42, 21, 31, 24, 34, 18, 40, 24, 40, 28, 30, 20, 56, 22, 32, 36, 43, 28, 48, 24, 42, 32, 48, 24, 65, 26, 38, 42, 48, 32, 56, 28, 62
Offset: 1

Views

Author

N. J. A. Sloane, Feb 23 2009

Keywords

Comments

Also, apparently a(n) is the number of nonequivalent (up to lattice-preserving affine transformation) triangles on 2D square lattice of area n/2 [Karpenkov]. - Andrey Zabolotskiy, Jul 06 2017
From Andrey Zabolotskiy, Jan 18 2018: (Start)
The parent lattice of the sublattices under consideration has Patterson symmetry group p6, and two sublattices are considered equivalent if they are related via a symmetry from that group [Rutherford]. For other 2D Patterson groups, the analogous sequences are A000203 (p2), A069734 (p2mm), A145391 (c2mm), A145392 (p4), A145393 (p4mm), A003051 (p6mm).
If we count sublattices related by parent-lattice-preserving reflection as equivalent, we get A003051 instead of this sequence. If we count sublattices related by rotation of the sublattice only (but not parent lattice; equivalently, sublattices related by rotation by angle which is not a multiple of Pi/3; see illustration in links) as equivalent, we get A054384. If we count sublattices related by any rotation or reflection as equivalent, we get A300651.
Rutherford says at p. 161 that a(n) != A054384(n) only when A002324(n) > 1, but actually these two sequences differ at other terms, too, for example, at n = 14 (see illustration). (End)

Crossrefs

Programs

  • Mathematica
    a[n_] := (DivisorSigma[1, n] + 2 DivisorSum[n, Switch[Mod[#, 3], 1, 1, 2, -1, 0, 0] &])/3; Array[a, 80] (* Jean-François Alcover, Dec 03 2015 *)
  • PARI
    A002324(n) = if( n<1, 0, sumdiv(n, d, (d%3==1) - (d%3==2)));
    A000203(n) = if( n<1, 0, sigma(n));
    a(n) = (A000203(n) + 2 * A002324(n)) / 3;
    \\ Joerg Arndt, Oct 13 2013

Formula

a(n) = (A000203(n) + 2 * A002324(n))/3. [Rutherford] - N. J. A. Sloane, Mar 13 2009
a(n) = Sum_{ m: m^2|n } A000086(n/m^2) + A157227(n/m^2) = A002324(n) + Sum_{ m: m^2|n } A157227(n/m^2). [Rutherford] - Andrey Zabolotskiy, Apr 23 2018
a(n) = Sum_{ d|n } A008611(d-1). - Andrey Zabolotskiy, Aug 29 2019

Extensions

New name from Andrey Zabolotskiy, Dec 14 2017

A046524 Number of coverings of Klein bottle with n lists.

Original entry on oeis.org

1, 3, 2, 5, 2, 7, 2, 8, 3, 8, 2, 13, 2, 9, 4, 13, 2, 14, 2, 16, 4, 11, 2, 23, 3, 12, 4, 19, 2, 22, 2, 22, 4, 14, 4, 30, 2, 15, 4, 30, 2, 26, 2, 25, 6, 17, 2, 41, 3, 23, 4, 28, 2, 30, 4, 37, 4, 20, 2, 50, 2, 21, 6, 39, 4, 34, 2, 34, 4, 34, 2, 59, 2, 24, 6, 37, 4, 38, 2, 56, 5, 26, 2, 62, 4, 27, 4
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory); A046524:=n->`if`(type(n/2, integer), (3*tau(n) + sigma(n/2) - tau(n/2))/2, tau(n)); seq(A046524(n), n=1..100); # Wesley Ivan Hurt, Feb 14 2014
  • Mathematica
    kb[n_]:=If[OddQ[n],DivisorSigma[0,n],(3DivisorSigma[0,n]+ DivisorSigma[ 1,n/2]- DivisorSigma[0,n/2])/2]; Array[kb,90] (* Harvey P. Dale, Oct 08 2011 *)
  • Sage
    def A046524(n) :
        f = lambda n : 1 if n % 2 == 1 else (n+7)//4
        return add(f(d) for d in divisors(n))
    [A046524(n) for n in (1..87)] # Peter Luschny, Jul 23 2012

Formula

a(n)=d(n) (the number of divisors) for odd n.
a(n)=[3d(n)+sigma(n/2)-d(n/2)]/2 for even n where d(n) is the number and sigma(n) the sum of divisors of n (A000005 and A000203).
Inverse Moebius transform of 1, 2, 1, 2, 1, 3, 1, 3, 1, 4, 1, 4, 1, 5, 1, 5, 1, 6, 1, 6, 1, 7, 1, 7, ... . G.f.: Sum_{n>1} x^n*(1+2*x^n-x^(4*n)-x^(5*n))/(1+x^(2*n))/(1-x^(2*n))^2. - Vladeta Jovovic, Feb 03 2003

Extensions

More terms from Vladeta Jovovic, Feb 03 2003

A221951 Number of subgroups of C_4 X C_n.

Original entry on oeis.org

3, 8, 6, 15, 6, 16, 6, 22, 9, 16, 6, 30, 6, 16, 12, 29, 6, 24, 6, 30, 12, 16, 6, 44, 9, 16, 12, 30, 6, 32, 6, 36, 12, 16, 12, 45, 6, 16, 12, 44, 6, 32, 6, 30, 18, 16, 6, 58, 9, 24, 12, 30, 6, 32, 12, 44, 12, 16, 6, 60, 6, 16, 18, 43, 12, 32, 6, 30, 12, 32, 6, 66, 6, 16, 18, 30, 12, 32, 6, 58
Offset: 1

Views

Author

N. J. A. Sloane, Feb 02 2013

Keywords

Crossrefs

Row 4 of A216624.

Programs

Formula

a(n) = Sum_{d|n} (1+gcd(2,d)+gcd(4,d)). - Antti Karttunen, Sep 30 2018

A143110 Triangle read by rows, A051731 * A000034 * 0^(n-k), 1<=k<=n.

Original entry on oeis.org

1, 1, 2, 1, 0, 1, 1, 2, 0, 2, 1, 0, 0, 0, 1, 1, 2, 1, 0, 0, 2, 1, 0, 0, 0, 0, 0, 1, 1, 2, 0, 2, 0, 0, 0, 2, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 2, 0, 0, 1, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 1, 2, 0, 2, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2
Offset: 1

Views

Author

Gary W. Adamson & Mats Granvik, Jul 25 2008

Keywords

Comments

Row sums = A069735: (1, 3, 2, 5, 2, 6, 2, 7,...).
T(n,k) = 2 if k is even and divides n, 1 if k is odd and divides n; 0 otherwise.

Examples

			First few rows of the triangle are:
1;
1, 2;
1, 0, 1;
1, 2, 0, 2;
1, 0, 0, 0, 1;
1, 2, 1, 0, 0, 2;
1, 0, 0, 0, 0, 0, 1;
...
		

Crossrefs

Formula

Triangle read by rows, A051731 * A000034 * 0^(n-k), 1<=k<=n; where A051731 = the inverse Mobius transform and A000034 = (1, 2, 1, 2, 1, 2,...).

A329467 Expansion of Product_{i>=1, j>=1} (1 + x^(i*j)) * (1 + x^(2*i*j)).

Original entry on oeis.org

1, 1, 3, 5, 10, 16, 31, 47, 81, 126, 204, 308, 487, 720, 1098, 1613, 2395, 3461, 5061, 7213, 10362, 14633, 20712, 28926, 40497, 56000, 77527, 106349, 145791, 198339, 269678, 364106, 491125, 658708, 882077, 1175392, 1563884, 2071363, 2739095, 3608040, 4744058, 6216087
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 13 2019

Keywords

Comments

Weigh transform of A069735.

Crossrefs

Programs

  • Mathematica
    nmax = 41; CoefficientList[Series[Product[((1 - x^(4 k))/(1 - x^k))^DivisorSigma[0, k], {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) d If[EvenQ[d], DivisorSigma[0, d] + DivisorSigma[0, d/2], DivisorSigma[0, d]], {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 41}]

Formula

G.f.: Product_{i>=1, j>=1} (1 + x^(2*i*j)) / (1 - x^(i*(2*j - 1))).
G.f.: Product_{k>=1} ((1 - x^(4*k)) / (1 - x^k))^A000005(k).
G.f.: Product_{k>=1} (1 + x^k)^A069735(k).
Showing 1-8 of 8 results.