A246063 First occurrence of n in sequence A112329.
2, 1, 3, 9, 15, 64, 45, 256, 96, 144, 192, 4096, 240, 16384, 768, 576, 480, 262144, 720, 1048576, 960, 2304, 12288, 16777216, 1440, 5184, 49152, 3600, 3840, 1073741824, 2880, 4294967296, 3360, 36864, 786432, 20736, 5040, 274877906944, 3145728, 147456, 6720
Offset: 0
Keywords
Links
- Ray Chandler, Table of n, a(n) for n = 0..3322 [terms <= 1000 digits]
Programs
-
Mathematica
g[lst_,p_]:=Module[{t,i,j},Union[Flatten[Table[t=lst[[i]];t[[j]]=p*t[[j]];Sort[t],{i,Length[lst]},{j,Length[lst[[i]]]}],1],Table[Sort[Append[lst[[i]],p]],{i,Length[lst]}]]];f[n_]:=Module[{i,j,p,e,lst={{}}},{p,e}=Transpose[FactorInteger[n]];Do[lst=g[lst,p[[i]]],{i,Length[p]},{j,e[[i]]}];lst]; (* above factor functions from T. D. Noe in A162247 *) nmax=100; a1={2,1,3}; Do[ least=Infinity; fn=f[n]; Do[ exps=Reverse[fnitem]-1; odd=even=1; cnt=0; Do[ cnt++; odd*=(Prime[cnt+1]^exp); even*=(Prime[cnt]^exp); ,{exp,exps}]; least=Min[least,odd,4even]; ,{fnitem,fn}]; AppendTo[a1,least]; ,{n,3,nmax}]; a1
-
PARI
d(n) = if (denominator(n)==1, numdiv(n), 0); f(n) = numdiv(n) - 2*d(n/2) + 2*d(n/4); a(n) = {my(k = 1); while (f(k) != n, k++); k;} \\ Michel Marcus, Jul 30 2017
Formula
a(p) = 2^(p+1) for prime p >= 5.
Comments