A099825
Sum of the first 2^n primes.
Original entry on oeis.org
2, 5, 17, 77, 381, 1851, 8893, 41741, 191755, 868151, 3875933, 17120309, 74950547, 325590115, 1405167561, 6029676711, 25750781177, 109495928099, 463852117169, 1958476902435, 8244703036797, 34615624751259, 144991244981985, 605994279458465, 2527803622205465
Offset: 0
-
NextPrim[n_] := Block[{k = n + 1}, While[ !PrimeQ[k], k++ ]; k]; f[0] = 2; f[n_] := f[n] = Block[{k = 0, mx = 2^n/2, np = Prime[2^n/2], s = f[n - 1]}, While[k < mx, k++; np = NextPrim@np; s = s + np]; s]; Table[ f@n, {n, 0, 23}] (* Robert G. Wilson v, Aug 24 2006 *)
Module[{nn=22,ap},ap=Accumulate[Prime[Range[2^nn]]];Table[ap[[2^n]],{n,0,nn}]] (* Harvey P. Dale, Apr 12 2017 *)
-
a(n)=my(s); n=2^n; forprime(p=2,, s+=p; if(n--==0, return(s))) \\ Charles R Greathouse IV, Feb 16 2017 \\ corrected by David A. Corneth, Aug 05 2025
A130739
Sum of primes < 2^n.
Original entry on oeis.org
0, 5, 17, 41, 160, 501, 1720, 6081, 22548, 80189, 289176, 1070091, 3908641, 14584641, 54056763, 202288087, 761593692, 2867816043, 10862883985, 41162256126, 156592635694, 596946687124, 2280311678414, 8729068693022
Offset: 1
a(3) is 17 because the sum of primes less than 2^3 is 2+3+5+7=17.
-
Table[Sum[Prime[i], {i, PrimePi[2^n-1]}], {n, 1, 10}]
-
a(n) = {s = 0; forprime(p=2, 2^n-1, s +=p); return (s);} \\ Michel Marcus, Jul 17 2013
A099826
Sum of the first 3^n primes.
Original entry on oeis.org
2, 10, 100, 1264, 15116, 171148, 1864190, 19697700, 203534530, 2067129306, 20706364528, 205144046742, 2014349179358, 19632546354498, 190150622868298, 1831906588192414, 17567504017456404, 167794196312059488, 1597037992049539274
Offset: 0
-
NextPrim[n_] := Block[{k = n + 1}, While[ !PrimeQ[k], k++ ]; k]; k = p = 1; s = 0; Do[ While[p = NextPrim[p]; s = s + p; k < 10^n, k++ ]; k++; Print[s], {n, 0, 16}]
A134182
Difference between the sums of the first 10^n odd primes and the first 10^n odd positive integers > 1.
Original entry on oeis.org
38, 14478, 2688838, 396250152, 52261798440, 6472980453364, 770530574266708, 89262852894258444, 10138479465982004008, 1134379338819040693132, 125436174619351016716668, 13738971133578180130155676, 1493061976858459711065006050, 161191473337955042966337346114
Offset: 1
a(1) = (3 + 5 + 7 + 11 + 13 + 17 + 19 + 23 + 29 + 31) - (3 + 5 + 7 + 9 + 11 + 13 + 15 + 17 + 19 + 21) = 158 - 120 = 38.
a(2) = 14478 because at 10^2, 100 sums of primes and odds, the prime sum is 24678, the odd sum is 10200 and the difference is 14478.
A113489
Composite numbers of the form "Sum of the first 10^k primes".
Original entry on oeis.org
129, 3682913, 496165411, 62260698721, 7472966967499, 99262851056183695, 1234379338586942892505, 135436174616790289414111, 14738971133550183905879827, 1593061976858155930556059673, 171191473337951767580578821529, 18305009217958957209544913346089
Offset: 1
The first 10^10 primes add up to 1234379338586942892505, which is composite.
A131558
Primes which are the sum of the first 10^k primes for some k.
Original entry on oeis.org
2, 24133, 870530414842019, 11138479445180240497, 1948856725874605823462196012533593
Offset: 1
The sum of the first 10^1 primes is 129 which is not prime and not in the sequence. The sum of the first 10^9 primes is 11138479445180240497 which is prime and in the sequence.
-
sm=0; ct=0; p=1; bb=1;
{ while ( 1,
p = nextprime(p+1); sm += p; ct++;
if ( (ct==bb), if ( isprime(sm),print1(sm,", ")); bb*=10; );
); }
A222558
Least prime p such that 2*n*p is a sum of 10^6 subsequent primes.
Original entry on oeis.org
3736971300983, 1868582442157, 1245659681423, 934275734321, 747425233469, 622762733249, 534156162737, 467093343419, 415824854441, 373728877943, 339743670103, 311538175027, 287741107327, 266994001331, 249114901193, 233613943273, 219815919913, 208214150917
Offset: 1
a(1) = 3736971300983 = (p(64)+...+p(1000063))/2 = (311 + ... + 15486871)/2.
a(2) = 1868582442157 = (p(89)+...+p(1000088))/4 = (461 + ... + 15487253)/4.
-
Do[s = 7472966967499 ; a = 2; b = 15485863; Do[s = s - a + (b = NextPrime[b]); a = NextPrime[a]; If[PrimeQ[s/m] , Print[{m, k, a, b, s/m}]; Break[]], {k, 2, 10^6}], {m, 2, 100, 2}]
A301599
Numbers k at which the ratio r(k) = (k-th prime) / (average of first k primes) reaches a record high.
Original entry on oeis.org
1, 2, 3, 4, 5, 7, 9, 10, 12, 17, 25, 31, 35, 48
Offset: 1
The table below shows k, prime(k), the sum and average of the first k primes, and r(k), for each number k in the sequence, and also for k = 100, 1000, ..., 10^7.
.
n| a(n)=k prime(k) sum avg r(k)
--+--------------------------------------------------------
1| 1 2 2 2.000 1.00000
2| 2 3 5 2.500 1.20000
3| 3 5 10 3.333 1.50000
4| 4 7 17 4.250 1.64706
5| 5 11 28 5.600 1.96429
6| 7 17 58 8.286 2.05172
7| 9 23 100 11.111 2.07000
8| 10 29 129 12.900 2.24806
9| 12 37 197 16.417 2.25381
10| 17 59 440 25.882 2.27955
11| 25 97 1060 42.400 2.28774
12| 31 127 1720 55.484 2.28895
13| 35 149 2276 65.029 2.29130
14| 48 223 4661 97.104 2.29650
100 541 24133 241.330 2.24174
1000 7919 3682913 3682.913 2.15020
10000 104729 496165411 49616.541 2.11077
100000 1299709 62260698721 622606.987 2.08753
1000000 15485863 7472966967499 7472966.967 2.07225
10000000 179424673 870530414842019 87053041.484 2.06110
Showing 1-8 of 8 results.
Comments