cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A099830 Smallest perimeter S such that exactly n distinct Pythagorean triangles with this perimeter can be constructed.

Original entry on oeis.org

12, 60, 120, 240, 420, 720, 1320, 840, 2640, 1680, 3360, 2520, 4620, 7920, 7560, 5040, 10080, 17160, 10920, 9240, 40320, 25200, 28560, 21840, 18480, 60480, 41580, 46200, 36960, 32760, 27720, 78540, 60060, 129360, 134640, 115920, 85680, 65520, 83160
Offset: 1

Views

Author

Hugo Pfoertner, Oct 27 2004

Keywords

Comments

Least perimeter common to exactly n distinct Pythagorean triangles. - Lekraj Beedassy, Jun 07 2006

Examples

			a(7)=1320 because 1320 is the smallest possible perimeter for which exactly 7 different Pythgorean triangles exist: 1320 = 110+600+610 = 120+594+606 = 220+528+572 = 231+520+569 = 264+495+561 = 330+440+550 = 352+420+548.
		

Crossrefs

Cf. A099829 first perimeter producing at least n Pythagorean triangles, A009096 ordered perimeters of Pythagorean triangles, A001399, A069905 partitions into 3 parts.

Extensions

More terms from Ray Chandler, Oct 29 2004

A352881 a(n) is the minimal number z having the largest number of solutions to the Diophantine equation 1/z = 1/x + 1/y such that 1 <= x <= y <= 10^n.

Original entry on oeis.org

2, 12, 60, 840, 9240, 55440, 720720, 6126120, 116396280, 232792560, 5354228880, 26771144400, 465817912560, 4813451763120, 24067258815600, 144403552893600, 2671465728531600, 36510031623265200, 219060189739591200, 4709794079401210800, 18839176317604843200, 221360321731856907600
Offset: 1

Views

Author

Darío Clavijo, Apr 06 2022

Keywords

Comments

Solving for z gives z = (x*y) / (x+y), so x*y == 0 (mod x+y).
All known terms are from A025487:
a(1) = 2 = 2;
a(2) = 12 = 2^2 * 3;
a(3) = 60 = 2^2 * 3 * 5;
a(4) = 840 = 2^3 * 3 * 5 * 7;
a(5) = 9240 = 2^3 * 3 * 5 * 7 * 11.
If a solution to the equation 1/z = 1/x + 1/y is found such that gcd(x,y,z) is a square, then x+y, x*y*z, and (x-y)^2 + (2*z)^2 are also squares.
For all solutions, x^2 + y^2 + z^2 is a square.
The sequence is indeed a subsequence of A025487, and likely of A126098 as well. - Max Alekseyev, Mar 01 2023
a(n) < 5*10^(n-1). - Max Alekseyev, Mar 01 2023

Examples

			For n=1, we have the following, where r = (x*y) mod (x+y). (In the last four columns, each number marked by an asterisk is a square.)
.
  r  z  x  y  x*y  x+y  x*y*z  x^2+y^2+z^2
  -  -  -  -  ---  ---  -----  -----------
  0  1  2  2    4*   4*     4*           9* (solution)
  2  1  2  4    8    6      8           21
  4  1  2  6   12    8     12           41
  6  1  2  8   16*  10     16*          69
  3  1  3  3    9    6      9*          19
  0  2  3  6   18*   9*    36*          49* (solution)
  3  2  3  9   27   12     54           94
  0  2  4  4   16*   8     32           36* (solution)
  8  2  4  8   32   12     64*          84
  5  2  5  5   25*  10     50           54
  0  3  6  6   36*  12    108           81* (solution)
  7  3  7  7   49*  14    147          107
  0  4  8  8   64*  16*   256*         144* (solution)
  9  4  9  9   81*  18    324*         178
.
z = 2 has the largest number of solutions, so a(1) = 2.
The number of solutions for the resulting z cannot exceed A018892(z).
		

Crossrefs

Programs

  • PARI
    a(n)=my(bc=0,bk=0,L=10^n);for(k=1,L-1,my(c=0,k2=k^2);for(d=max(1,k2\(L-k)+1),k,if(k2%d==0,c++););if(c>bc,bc=c;bk=k););return(bk); \\ Darío Clavijo, Mar 03 2025
  • Python
    def a(n):
        # k=x*y and d=x+y
        bc, bk, L = 0, None, 10**n
        for k in range(1, L):
            c, k2 = 0, k * k
            for d in range(max(1, k2 // (L - k) + 1), k + 1):
                if k2 % d == 0: c += 1
            if c > bc:
                bc, bk = c, k
        return bk
    

Extensions

a(6) from Chai Wah Wu, Apr 10 2022
a(7)-a(22) from Max Alekseyev, Mar 01 2023
Showing 1-2 of 2 results.