cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A100044 Decimal expansion of Pi^2/9.

Original entry on oeis.org

1, 0, 9, 6, 6, 2, 2, 7, 1, 1, 2, 3, 2, 1, 5, 0, 9, 5, 7, 6, 4, 8, 2, 7, 6, 7, 7, 7, 7, 6, 4, 0, 1, 6, 7, 9, 2, 8, 1, 2, 6, 3, 3, 2, 6, 7, 4, 7, 1, 1, 9, 8, 9, 5, 8, 4, 9, 0, 3, 7, 2, 1, 5, 2, 9, 1, 3, 3, 3, 8, 3, 1, 3, 6, 0, 2, 1, 3, 3, 9, 1, 5, 8, 8, 9, 0, 8, 5, 9, 3, 3, 7, 4, 6, 5, 0, 5, 8, 0, 3, 5, 3
Offset: 1

Views

Author

Eric W. Weisstein, Oct 31 2004

Keywords

Comments

The Dirichlet L-series for the principal character mod 6 (which is A120325 shifted left) evaluated at 2. - R. J. Mathar, Jul 20 2012
Equals the asymptotic mean of the abundancy index of the numbers coprime to 6 (A007310). - Amiram Eldar, May 12 2023

Examples

			1.096622711232150957648276777764...
		

References

  • F. Aubonnet, D. Guinin, and B.Joppin, Précis de Mathématiques, Analyse 2, Classes Préparatoires, Premier Cycle Universitaire, Bréal, 1990, Exercice 908, pages 82 and 91-92.
  • L. B. W. Jolley, Summation of Series, Dover, 1961.

Crossrefs

Programs

  • Mathematica
    RealDigits[Pi^2/9, 10, 110][[1]] (* G. C. Greubel, Feb 17 2017 *)
  • PARI
    default(realprecision, 110); Pi^2/9 \\ G. C. Greubel, Feb 17 2017
    
  • Sage
    numerical_approx(pi^2/9, digits=120) # G. C. Greubel, Jun 02 2021

Formula

Equals 1 + (1/2)*(1/3)*(1/2) + (1/3)*(1*2)/(3*5)*(1/2)^2 + (1/4) *(1*2*3)/(3*5*7)*(1/2)^3 + .... [Jolley eq 277]
Equals 1/1^2 + 1/5^2 + 1/7^2 + 1/11^2 + 1/13^2 + 1/17^2 + .... - R. J. Mathar, Jul 20 2012
Equals 2*Sum_{n>=1} 1/(6*n*(3*n + (-1)^n - 3) - 3*(-1)^n + 5) = 2*Sum_{n>=1} 1/(2*A104777(n)). - Alexander R. Povolotsky, May 18 2014
Equals A019670^2. - Michel Marcus, May 19 2014
Equals 2*A086463 = 2*Sum_{n>=1} 1/A091999(n)^2, equivalent to the formula of 2012 above. - Alexander R. Povolotsky, May 20 2014
Equals 3F2(1,1,1; 3/2,2 ; 1/4), following from Clausen's formula of J. Reine Angew. Math 3 (1828) for squares of 2F1() as noted in A019670. - R. J. Mathar, Oct 16 2015
Equals Product_{n >= 3} prime(n)^2 / (prime(n)^2 - 1), Euler's prime product, excluding first two primes. - Fred Daniel Kline, Jun 09 2016
Equals Integral_{x=0..oo} log(x)/(x^6 - 1) dx. - Amiram Eldar, Aug 12 2020
Equals Sum_{k>=1} A000120(k) * (2*k+1)/(k^2*(k+1)^2) (Allouche and Shallit, 1990). - Amiram Eldar, Jun 01 2021
Equals Integral_{x=0..1} log(1+x+x^2)/x dx (Aubonnet). - Bernard Schott, Feb 04 2022
Equals Sum_{k>=1} A008833(k)/k^4. - Amiram Eldar, Jan 25 2024
Continued fraction expansion: 1/(1 - 1/(13 - 48/(34 - 270/(65 - ... - 2*(2*n-1)*n^3/((5*n^2+6*n+2) - ... ))))). See A130549. - Peter Bala, Feb 16 2024
Equals Sum_{k >= 0} 1/((k + 1)*(2*k + 1)*binomial(2*k, k)). See Catalan, Section 21, equation 30. - Peter Bala, Aug 14 2024