cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A121860 a(n) = Sum_{d|n} n!/(d!*(n/d)!).

Original entry on oeis.org

1, 2, 2, 8, 2, 122, 2, 1682, 10082, 30242, 2, 7318082, 2, 17297282, 3632428802, 36843206402, 2, 2981705126402, 2, 1690185726028802, 3379030566912002, 28158588057602, 2, 76941821303636889602, 1077167364120207360002
Offset: 1

Views

Author

Vladeta Jovovic, Sep 09 2006

Keywords

Comments

a(n) = 2 iff n is prime.
a(468) has 1007 decimal digits. - Michael De Vlieger, Sep 12 2018
From Gus Wiseman, Jan 10 2019: (Start)
Number of matrices whose entries are 1,...,n, up to row and column permutations. For example, inequivalent representatives of the a(4) = 8 matrices are:
[1 2 3 4]
.
[1 2] [1 2] [1 3] [1 3] [1 4] [1 4]
[3 4] [4 3] [2 4] [4 2] [2 3] [3 2]
.
[1]
[2]
[3]
[4]
(End)
Conjecture: the sequence a(n) taken modulo a positive integer k >= 3 eventually becomes constant equal to 2. For example, the sequence taken modulo 11 is [1, 2, 2, 8, 2, 1, 2, 10, 6, 3, 2, 2, 2, 2, 2, 2, ...]. - Peter Bala, Aug 08 2025

Crossrefs

Programs

  • Maple
    with(numtheory): seq(n!*add(1/(d!*(n/d)!), d in divisors(n)), n = 1..25); # Peter Bala, Aug 04 2025
  • Mathematica
    f[n_] := Block[{d = Divisors@n}, Plus @@ (n!/(d! (n/d)!))]; Array[f, 25] (* Robert G. Wilson v, Sep 11 2006 *)
    Table[DivisorSum[n, n!/(#!*(n/#)!) &], {n, 25}] (* Michael De Vlieger, Sep 12 2018 *)
  • PARI
    a(n) = sumdiv(n, d, n!/(d!*(n/d)!)); \\ Michel Marcus, Sep 13 2018

Formula

E.g.f.: Sum_{k>0} (exp(x^k)-1)/k!.

Extensions

More terms from Robert G. Wilson v, Sep 11 2006

A100194 Incrementally largest denominators of the Bernoulli numbers.

Original entry on oeis.org

1, 2, 6, 30, 42, 66, 2730, 14322, 1919190, 56786730, 140100870, 209191710, 2328255930, 2381714790, 7225713885390, 9538864545210, 21626561658972270, 446617991732222310, 115471236091149548610, 5145485882746933233510, 14493038256293268734790
Offset: 1

Views

Author

Eric W. Weisstein, Nov 08 2004

Keywords

Crossrefs

Programs

  • Mathematica
    Reap[For[n = record = 0, n < 1000, n = n + 2, If[(d = Denominator[BernoulliB[n]]) > record, Sow[d]; record = d]]][[2, 1]] (* Jean-François Alcover, Nov 09 2012 *)
  • PARI
    b(n) = if((n==0) || (n>1 && n%2==1), 1, my(d=divisors(n)); prod(k=1, #d, if(isprime(d[k]+1), d[k]+1, 1))); \\ more efficient than denominator(bernfrac(n))
    lista(n) = { my(m=0); for(k=0, n, my(d=b(k)); if(d>m, m=d; print1(d, ", "))); }
    lista(1000); \\ Daniel Suteu, Dec 22 2018

Extensions

a(21) from Seiichi Manyama, Jan 21 2017

A362285 Indices of records of A138705.

Original entry on oeis.org

0, 1, 5, 6, 8, 18, 30, 36, 90, 180, 360, 420, 504, 540, 630, 810, 840, 1080, 1260, 1680, 1890, 2520, 3240, 3780, 4200, 5040, 7560, 10080, 12600, 21420, 30240, 32760, 37800, 42840, 50400, 60480, 64260, 65520, 83160, 98280, 128520
Offset: 1

Views

Author

Amiram Eldar, Apr 14 2023

Keywords

Comments

The corresponding record values are in A362286.

Crossrefs

Programs

  • Mathematica
    seq[kmax_] := Module[{s = {}, mx = 0, m}, Do[m = Length[ContinuedFraction[ Abs[BernoulliB[2*k]]]]; If[m > mx, mx = m; AppendTo[s, k]], {k, 0, kmax}]; s]; seq[1000]
  • PARI
    lista(kmax) = {my(mx = 0, m); for(k = 0, kmax, m = #contfrac(abs(bernfrac(2*k))); if(m > mx, mx = m; print1(k,", "))); }

Formula

A138705(a(n)) = A362286(n).

A362286 Record values in A138705.

Original entry on oeis.org

1, 2, 3, 6, 7, 10, 17, 23, 33, 39, 42, 46, 49, 54, 55, 57, 66, 73, 78, 83, 85, 95, 100, 105, 118, 133, 157, 162, 183, 201, 220, 224, 234, 242, 262, 272, 273, 287, 309, 314, 366
Offset: 1

Views

Author

Amiram Eldar, Apr 14 2023

Keywords

Comments

The corresponding indices of records are in A362285.

Crossrefs

Programs

  • Mathematica
    seq[kmax_] := Module[{s = {}, mx = 0, m}, Do[m = Length[ContinuedFraction[ Abs[BernoulliB[2*k]]]]; If[m > mx, mx = m; AppendTo[s, m]], {k, 0, kmax}]; s]; seq[1000]
  • PARI
    lista(kmax) = {my(mx = 0, m); for(k = 0, kmax, m = #contfrac(abs(bernfrac(2*k))); if(m > mx, mx = m; print1(m,", "))); }

Formula

a(n) = A138705(A362285(n)).
Showing 1-4 of 4 results.