A100227 Main diagonal of triangle A100226.
1, 1, 5, 13, 33, 81, 197, 477, 1153, 2785, 6725, 16237, 39201, 94641, 228485, 551613, 1331713, 3215041, 7761797, 18738637, 45239073, 109216785, 263672645, 636562077, 1536796801, 3710155681, 8957108165, 21624372013, 52205852193, 126036076401, 304278004997
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-1,-1).
Programs
-
Mathematica
LucasL[Range[0,35], 2] - 1 (* G. C. Greubel, Feb 26 2020 *)
-
Maxima
a(n):=if n=0 then 1 else n*sum(sum(binomial(k, i)*binomial(n-i-1, k-1),i,0,n-k)/k,k,1,n); /* Vladimir Kruchinin, May 13 2011 */
-
PARI
a(n)=if(n==0,1,n*polcoeff(log((1-x)/(1-2*x-x^2)+x*O(x^n)),n))
-
PARI
a(n)=polcoeff((1-2*x+3*x^2)/(1-3*x+x^2+x^3)+x*O(x^n),n)
Formula
a(n) = A002203(n) - 1.
a(n) = 2*a(n-1) + a(n-2) + 2 for n > 1, with a(0)=1, a(1)=1.
G.f.: Sum_{n>=1} a(n)*x^n/n = log((1-x)/(1-2*x-x^2)).
G.f.: (1-2*x+3*x^2)/((1-x)*(1-2*x-x^2)). - Paul D. Hanna, Feb 22 2005
a(n) = n*Sum_{k=1..n} (1/k)*Sum_{i=0..n-k} binomial(k, i)*binomial(n-i-1, k-1), n > 0, a(0)=1. - Vladimir Kruchinin, May 13 2011
a(n) = -1 + (1-sqrt(2))^n + (1+sqrt(2))^n. - Colin Barker, Mar 16 2016
E.g.f.: (2*cosh(sqrt(2)*x) - 1)*exp(x). - Ilya Gutkovskiy, Aug 22 2016
a(n) = 3*a(n-1) - a(n-2) - a(n-3). - Wesley Ivan Hurt, Jul 13 2020
Comments