cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A100227 Main diagonal of triangle A100226.

Original entry on oeis.org

1, 1, 5, 13, 33, 81, 197, 477, 1153, 2785, 6725, 16237, 39201, 94641, 228485, 551613, 1331713, 3215041, 7761797, 18738637, 45239073, 109216785, 263672645, 636562077, 1536796801, 3710155681, 8957108165, 21624372013, 52205852193, 126036076401, 304278004997
Offset: 0

Views

Author

Paul D. Hanna, Nov 29 2004

Keywords

Comments

Specify that a triangle has T(n,0) = T(n,n) = (n+1)*(n+2)/2. The interior terms T(r,c) = T(r-1,c) + T(r-1,c-1) + T(r-2,c-1). The difference between the sum of the terms in row(n+1) and those in row(n) is a(n+2). - J. M. Bergot, Mar 15 2013
Starting with offset 1 the sequence is A001333: (1, 3, 7, 17, 41, ...), convolved with (1, 2, 0, 2, 0, 2, ...). - Gary W. Adamson, Aug 10 2016
Number of ways to tile a bracelet of length n with single-color squares, and two colors of k-ominoes for k > 1. Compare to A001333 as mentioned in the previous comment: A001333 can be thought of as the number of ways to tile a strip of length n with single-color squares and two-color k-ominoes for k > 1. - Greg Dresden, Feb 26 2020

Crossrefs

Programs

  • Mathematica
    LucasL[Range[0,35], 2] - 1 (* G. C. Greubel, Feb 26 2020 *)
  • Maxima
    a(n):=if n=0 then 1 else n*sum(sum(binomial(k, i)*binomial(n-i-1, k-1),i,0,n-k)/k,k,1,n); /* Vladimir Kruchinin, May 13 2011 */
  • PARI
    a(n)=if(n==0,1,n*polcoeff(log((1-x)/(1-2*x-x^2)+x*O(x^n)),n))
    
  • PARI
    a(n)=polcoeff((1-2*x+3*x^2)/(1-3*x+x^2+x^3)+x*O(x^n),n)
    

Formula

a(n) = A002203(n) - 1.
a(n) = 2*a(n-1) + a(n-2) + 2 for n > 1, with a(0)=1, a(1)=1.
G.f.: Sum_{n>=1} a(n)*x^n/n = log((1-x)/(1-2*x-x^2)).
G.f.: (1-2*x+3*x^2)/((1-x)*(1-2*x-x^2)). - Paul D. Hanna, Feb 22 2005
a(n) = n*Sum_{k=1..n} (1/k)*Sum_{i=0..n-k} binomial(k, i)*binomial(n-i-1, k-1), n > 0, a(0)=1. - Vladimir Kruchinin, May 13 2011
a(n) = -1 + (1-sqrt(2))^n + (1+sqrt(2))^n. - Colin Barker, Mar 16 2016
E.g.f.: (2*cosh(sqrt(2)*x) - 1)*exp(x). - Ilya Gutkovskiy, Aug 22 2016
a(n) = A000129(n+1) + A000129(n-1)-1 for n > 0. - Rigoberto Florez, Jul 12 2020
a(n) = 3*a(n-1) - a(n-2) - a(n-3). - Wesley Ivan Hurt, Jul 13 2020