cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A147759 Palindromes formed from the reflected decimal expansion of the infinite concatenation of 1's and 0's.

Original entry on oeis.org

1, 11, 101, 1001, 10101, 101101, 1010101, 10100101, 101010101, 1010110101, 10101010101, 101010010101, 1010101010101, 10101011010101, 101010101010101, 1010101001010101, 10101010101010101, 101010101101010101
Offset: 1

Views

Author

Omar E. Pol, Nov 11 2008

Keywords

Comments

a(k(n)) is divisible by 3 iff k(n) is defined by k(1) = 5 and k(n+1) - k(n) = A100285(n+2). - Altug Alkan, Dec 05 2015

Examples

			n .... Successive digits of a(n)
1 ............. ( 1 )
2 ............ ( 1 1 )
3 ........... ( 1 0 1 )
4 .......... ( 1 0 0 1 )
5 ......... ( 1 0 1 0 1 )
6 ........ ( 1 0 1 1 0 1 )
7 ....... ( 1 0 1 0 1 0 1 )
8 ...... ( 1 0 1 0 0 1 0 1 )
9 ..... ( 1 0 1 0 1 0 1 0 1 )
10 ... ( 1 0 1 0 1 1 0 1 0 1 )
		

Crossrefs

Programs

  • Magma
    I:=[1,11,101,1001]; [n le 4 select I[n] else 11*Self(n-1)-20*Self(n-2)+110*Self(n-3)-100*Self(n-4): n in [1..30]]; // Vincenzo Librandi, Dec 05 2015
  • Mathematica
    CoefficientList[Series[x/((1 - x) (1 - 10 x) (1 + 10 x^2)),{x, 0, 20}], x] (* Vincenzo Librandi, Dec 05 2015 *)
    LinearRecurrence[{11,-20,110,-100},{1,11,101,1001},30] (* Harvey P. Dale, Apr 10 2022 *)
  • PARI
    Vec(x/((1-x)*(1-10*x)*(1+10*x^2)) + O(x^30)) \\ Michel Marcus, Dec 05 2015
    

Formula

From R. J. Mathar, Feb 20 2009: (Start)
a(n) = 11*a(n-1)-20*a(n-2)+110*a(n-3)-100*a(n-4).
G.f.: x/((1-x)*(1-10*x)*(1+10*x^2)). (End)
E.g.f.: (exp(x)*(10*exp(9*x) - 1) - 9*cos(sqrt(10)*x))/99. - Stefano Spezia, Oct 12 2024

A100284 Expansion of (1-4*x-x^2)/((1-x)*(1-4*x-5*x^2)).

Original entry on oeis.org

1, 1, 5, 21, 105, 521, 2605, 13021, 65105, 325521, 1627605, 8138021, 40690105, 203450521, 1017252605, 5086263021, 25431315105, 127156575521, 635782877605, 3178914388021, 15894571940105, 79472859700521, 397364298502605
Offset: 0

Views

Author

Paul Barry, Nov 11 2004

Keywords

Comments

Binomial transform of A054881.
Binomial transform of A179607. - Johannes W. Meijer, Aug 01 2010

Crossrefs

Programs

  • Magma
    [(5^n +2*(-1)^n +3)/6: n in [0..40]]; // G. C. Greubel, Feb 06 2023
    
  • Mathematica
    CoefficientList[Series[(1-4x-x^2)/((1-x)(1-4x-5x^2)),{x,0,30}],x] (* or *) LinearRecurrence[{5,1,-5},{1,1,5},30] (* Harvey P. Dale, Apr 01 2013 *)
  • SageMath
    def A100284(n): return (1/6)*(5^n +1 +4*((n+1)%2))
    [A100284(n) for n in range(41)] # G. C. Greubel, Feb 06 2023

Formula

a(n) = 5*a(n-1) + a(n-2) - 5*a(n-3).
a(n) = (1/6)*(3 + 5^n + 2*(-1)^n).
E.g.f.: (1/6)*(exp(5*x) + 3*exp(x) + 2*exp(-x)). - G. C. Greubel, Feb 06 2023
Showing 1-2 of 2 results.