cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A127140 Square of triangle A127139, row sums = A101035.

Original entry on oeis.org

1, -4, 1, -6, 0, 1, 4, -4, 0, 1, -10, 0, 0, 0, 1, 24, -6, -4, 0, 0, 1, -14, 0, 0, 0, 0, 0, 1, 0, 4, 0, -4, 0, 0, 0, 1, 9, 0, -6, 0, 0, 0, 0, 0, 1, 40, -10, 0, 0, -4, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Gary W. Adamson, Jan 06 2007

Keywords

Comments

Row sums = A101035: (1, -3, -5, 1, -9, 15, ...). A127140 * [1, 2, 3, ...] = A055615: (1, -2, -3, 0, -5, 6, -7, ...).

Examples

			First few rows of the triangle:
    1;
   -4,  1;
   -6,  0,  1;
    4, -4,  0,  1;
  -10,  0,  0,  0, 1;
   24, -6, -4,  0, 0, 1;
  -14,  0,  0,  0, 0, 0, 1;
    0,  4,  0, -4, 0, 0, 0, 1;
    9,  0, -6,  0, 0, 0, 0, 0, 1;
  ...
		

Crossrefs

Formula

Square of A127139.

A129667 Dirichlet inverse of the Abelian group count (A000688).

Original entry on oeis.org

1, -1, -1, -1, -1, 1, -1, 0, -1, 1, -1, 1, -1, 1, 1, 0, -1, 1, -1, 1, 1, 1, -1, 0, -1, 1, 0, 1, -1, -1, -1, 1, 1, 1, 1, 1, -1, 1, 1, 0, -1, -1, -1, 1, 1, 1, -1, 0, -1, 1, 1, 1, -1, 0, 1, 0, 1, 1, -1, -1, -1, 1, 1, 0, 1, -1, -1, 1, 1, -1, -1, 0, -1, 1, 1, 1, 1, -1, -1, 0, 0, 1, -1, -1, 1, 1, 1, 0, -1, -1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, -1, -1, -1, 0, -1, 1, -1
Offset: 1

Views

Author

Gerard P. Michon, Apr 28 2007, May 01 2007

Keywords

Comments

The simple formula which gives the value of this multiplicative function for the power of any prime can be derived from Euler's celebrated "Pentagonal Number Theorem" (applied to the generating function of the partition function A000041 on which A000688 is based).

Examples

			a(8) and a(27) are zero because the sequence vanishes for the cubes of primes. Not so with fifth powers of primes (since 5 is a pentagonal number) so a(32) is nonzero.
		

Crossrefs

Programs

  • Maple
    A000326inv := proc(n)
        local x,a ;
        for x from 0 do
            a := x*(3*x-1)/2 ;
            if a > n then
                return -1 ;
            elif a = n then
                return x;
            end if;
        end do:
    end proc:
    A005449inv := proc(n)
        local x,a ;
        for x from 0 do
            a := x*(3*x+1)/2 ;
            if a > n then
                return -1 ;
            elif a = n then
                return x;
            end if;
        end do:
    end proc:
    A129667 := proc(n)
        local a,e1,e2 ;
        a := 1 ;
        for pe in ifactors(n)[2] do
            e1 := A000326inv(op(2,pe)) ;
            e2 := A005449inv(op(2,pe)) ;
            if e1 >= 0 then
                a := a*(-1)^e1 ;
            elif e2 >= 0 then
                a := a*(-1)^e2 ;
            else
                a := 0 ;
            end if;
        end do:
        a;
    end proc: # R. J. Mathar, Nov 24 2017
  • Mathematica
    a[n_] := a[n] = If[n == 1, 1, -Sum[FiniteAbelianGroupCount[n/d] a[d], {d, Most @ Divisors[n]}]];
    Array[a, 100] (* Jean-François Alcover, Feb 16 2020 *)

Formula

Multiplicative function for which a(p^e) either vanishes or is equal to (-1)^m, for any prime p, if e is either m(3m-1)/2 or m(3m+1)/2 (these integers are the pentagonal numbers of the first and second kind, A000326 and A005449).
Dirichlet g.f.: 1 / Product_{k>=1} zeta(k*s). - Ilya Gutkovskiy, Nov 06 2020
Sum_{k=1..n} abs(a(k)) ~ c * n, where c = Product_{p prime} ((1-1/p) * (1 + Sum_{m>=1} (1/p^(m*(3*m-1)/2) + 1/p^(m*(3*m+1)/2)))) = 0.85358290653064143678... . - Amiram Eldar, Feb 17 2024

A328722 Dirichlet g.f.: 1 / zeta(s-1)^2.

Original entry on oeis.org

1, -4, -6, 4, -10, 24, -14, 0, 9, 40, -22, -24, -26, 56, 60, 0, -34, -36, -38, -40, 84, 88, -46, 0, 25, 104, 0, -56, -58, -240, -62, 0, 132, 136, 140, 36, -74, 152, 156, 0, -82, -336, -86, -88, -90, 184, -94, 0, 49, -100, 204, -104, -106, 0, 220, 0, 228, 232, -118, 240
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 26 2019

Keywords

Comments

Dirichlet inverse of A038040.
Dirichlet convolution of A055615 with itself.
Moebius transform of A101035.

Crossrefs

Cf. A007427, A008683, A038040, A046099 (positions of 0's), A055615, A101035.

Programs

  • Mathematica
    a[1] = 1; a[n_] := -Sum[(n/d) DivisorSigma[0, n/d] a[d], {d, Most @ Divisors[n]}]; Table[a[n], {n, 1, 60}]
    Table[n DivisorSum[n, MoebiusMu[n/#] MoebiusMu[#] &], {n, 1, 60}]
    f[p_, e_] := Switch[e, 1, -2*p, 2, p^2, , 0]; a[1] = 1; a[n] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 15 2023 *)
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 - p*X)^2)[n], ", ")) \\ Vaclav Kotesovec, Aug 22 2021
    
  • PARI
    A007427(n) = if(n<1, 0, sumdiv(n, d, moebius(d) * moebius(n/d))); \\ From A007427
    A328722(n) = (n*A007427(n)); \\ Antti Karttunen, Nov 15 2021

Formula

a(1) = 1; a(n) = -Sum_{d|n, dA038040(n/d) * a(d).
a(n) = n * A007427(n).
a(n) = Sum_{d|n} mu(n/d) * A101035(d).
Multiplicative with a(p) = -2*p, a(p^2) = p^2, and a(p) = 0 for e >= 3. - Amiram Eldar, Sep 15 2023

A323912 Dirichlet inverse of A083254(n), where A083254(n) = 2*phi(n) - n.

Original entry on oeis.org

1, 0, -1, 0, -3, 2, -5, 0, -2, 2, -9, 4, -11, 2, 5, 0, -15, 2, -17, 4, 7, 2, -21, 8, -6, 2, -4, 4, -27, -2, -29, 0, 11, 2, 17, 8, -35, 2, 13, 8, -39, -6, -41, 4, 8, 2, -45, 16, -10, -2, 17, 4, -51, 0, 29, 8, 19, 2, -57, 4, -59, 2, 12, 0, 35, -14, -65, 4, 23, -10, -69, 24, -71, 2, 4, 4, 47, -18, -77, 16, -8, 2, -81, -4, 47, 2, 29, 8, -87, 4
Offset: 1

Views

Author

Antti Karttunen, Feb 12 2019

Keywords

Crossrefs

Sequences that appear in the convolution formulas: A002033, A023900, A046692, A055615, A067824, A074206, A101035, A130054, A174725, A191161, A253249, A323910 (Möbius transform), A328722, A330575.

Programs

  • PARI
    up_to = 16384;
    DirInverse(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(dA083254(n) = (2*eulerphi(n)-n);
    v323912 = DirInverse(vector(up_to,n,A083254(n)));
    A323912(n) = v323912[n];
    
  • PARI
    A083254(n) = (2*eulerphi(n)-n);
    memoA323912 = Map();
    A323912(n) = if(1==n,1,my(v); if(mapisdefined(memoA323912,n,&v), v, v = -sumdiv(n,d,if(dA083254(n/d)*A323912(d),0)); mapput(memoA323912,n,v); (v))); \\ Antti Karttunen, Nov 22 2024

Formula

a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, dA083254(n/d) * a(d).
From Antti Karttunen, Nov 22 2024: (Start)
Following convolution formulas were conjectured for this sequence by Sequence Machine, with each one giving the first 10000 terms correctly. The first one is certainly true, because A083254 is Möbius transform of A033879:
a(n) = Sum_{d|n} A323910(d).
a(n) = Sum_{d|n} A023900(d)*A074206(n/d) = Sum_{d|n} A002033(d-1)*A023900(n/d).
a(n) = Sum_{d|n} A055615(d)*A067824(n/d)
a(n) = Sum_{d|n} A046692(d)*A253249(n/d)
a(n) = Sum_{d|n} A130054(d)*A174725(n/d)
a(n) = Sum_{d|n} A101035(d)*A330575(n/d)
a(n) = Sum_{d|n} A191161(d)*A328722(n/d)
(End)

A327960 Dirichlet g.f.: 1 / (zeta(s) * zeta(s-1)^2).

Original entry on oeis.org

1, -5, -7, 8, -11, 35, -15, -4, 15, 55, -23, -56, -27, 75, 77, 0, -35, -75, -39, -88, 105, 115, -47, 28, 35, 135, -9, -120, -59, -385, -63, 0, 161, 175, 165, 120, -75, 195, 189, 44, -83, -525, -87, -184, -165, 235, -95, 0, 63, -175, 245, -216, -107, 45, 253, 60, 273, 295, -119, 616
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 22 2019

Keywords

Comments

Dirichlet inverse of A060640.
Moebius transform applied twice to A101035.

Crossrefs

Cf. A046101 (positions of 0's), A046692, A055615, A060640, A101035.

Programs

  • Mathematica
    a[1] = 1; a[n_] := -Sum[Sum[j DivisorSigma[0, j], {j, Divisors[n/d]}] a[d], {d, Most @ Divisors[n]}]; Table[a[n], {n, 1, 60}]
    f[p_, e_] := Which[e==1, -(2*p+1), e==2, p^2+2*p, e==3, -p^2, e>3, 0]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Dec 02 2020 *)

Formula

a(1) = 1; a(n) = -Sum_{d|n, dA060640(n/d) * a(d).
a(n) = Sum_{d|n} A046692(n/d) * A055615(d).
Multiplicative with a(p^e) = -(2*p+1) if e=1, p^2+2*p if e=2, -p^2 if e=3, and 0 otherwise. - Amiram Eldar, Dec 02 2020

A120630 Dirichlet inverse of A002654.

Original entry on oeis.org

1, -1, 0, 0, -2, 0, 0, 0, -1, 2, 0, 0, -2, 0, 0, 0, -2, 1, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0, -2, 0, 0, 0, 0, 2, 0, 0, -2, 0, 0, 0, -2, 0, 0, 0, 2, 0, 0, 0, -1, -1, 0, 0, -2, 0, 0, 0, 0, 2, 0, 0, -2, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, -2, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 4, 0, 0, 0, -2, -2, 0, 0, 0, 0, 0, 0, -2, 1, 0, 0, -2, 0, 0, 0, 0, 2, 0, 0, -2, 0, 0, 0, -2, 0, 0, 0, 2, 0, 0
Offset: 1

Views

Author

Gerard P. Michon, Jun 25 2006

Keywords

Examples

			a(65)=4 because 65 is 5 times 13 and both of those primes are congruent to 1 modulo 4. Doubling an odd index yields the opposite of the value (e.g., a(130)=-4) because a(2)=-1. Doubling an even index yields zero.
		

Crossrefs

Programs

  • Maple
    A120630 := proc(n)
        local a,pp;
        if n = 1 then
            1;
        else
            a := 1 ;
            for pp in ifactors(n)[2] do
                if op(2,pp) > 2 then
                    a := 0;
                elif op(1,pp) = 2 then
                    if op(2,pp) = 1 then
                        a := -a ;
                    else
                        a := 0 ;
                    end if;
                elif modp(op(1,pp),4) = 3 then
                    if op(2,pp) = 1 then
                        a := 0 ;
                    else
                        a := -a ;
                    end if;
                else
                    if op(2,pp) = 1 then
                        a := -2*a ;
                    else
                        ;
                    end if;
                end if;
            end do:
            a;
        end if;
    end proc: # R. J. Mathar, Sep 15 2015
  • Mathematica
    A120630[n_] := Module[{a, pp}, If[n == 1, 1, a = 1; Do[Which[pp[[2]] > 2, a = 0, pp[[1]] == 2, If[pp[[2]] == 1, a = -a, a = 0], Mod[pp[[1]], 4] == 3, If[pp[[2]] == 1, a = 0, a = -a], True, If[pp[[2]] == 1, a = -2*a]], {pp, FactorInteger[n]}]; a]]; Array[A120630, 120] (* Jean-François Alcover, Apr 24 2017, after R. J. Mathar *)
  • PARI
    seq(n)={dirdiv(vector(n, n, n==1), vector(n, n, sumdiv( n, d, (d%4==1) - (d%4==3))))} \\ Andrew Howroyd, Aug 05 2018

Formula

Multiplicative function with a(p^e)=0 if e>2. a(2)=-1, a(4)=0. If p is a prime congruent to 3 modulo 4, then a(p)=0 and a(p^2)=-1. If p is a prime congruent to 1 modulo 4, then a(p)=-2 and a(p^2)=1.
Sum_{k=1..n} abs(a(k)) ~ c * n, where c = 3/(2*Pi*G) = 0.521269..., and G is Catalan's constant (A006752). - Amiram Eldar, Jan 22 2024

A328502 Dirichlet g.f.: zeta(s-1) / (zeta(s) * zeta(s-2)).

Original entry on oeis.org

1, -3, -7, -2, -21, 21, -43, -4, -12, 63, -111, 14, -157, 129, 147, -8, -273, 36, -343, 42, 301, 333, -507, 28, -80, 471, -36, 86, -813, -441, -931, -16, 777, 819, 903, 24, -1333, 1029, 1099, 84, -1641, -903, -1807, 222, 252, 1521, -2163, 56, -252, 240, 1911, 314, -2757, 108, 2331
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 22 2019

Keywords

Comments

Dirichlet inverse of A057660.

Crossrefs

Cf. A000010, A008683, A030230 (positions of negative terms), A057660, A101035.

Programs

  • Mathematica
    a[1] = 1; a[n_] := -Sum[DivisorSigma[2, (n/d)^2]/DivisorSigma[1, (n/d)^2] a[d], {d, Most @ Divisors[n]}]; Table[a[n], {n, 1, 55}]
    Table[DivisorSum[n, EulerPhi[n/#] MoebiusMu[#] #^2 &], {n, 1, 55}]
    f[p_, e_] := If[e == 1, p - 1 - p^2, -p^(e - 1)*(p - 1)^2]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Dec 03 2022 *)
  • PARI
    a(n)={sumdiv(n, d, eulerphi(n/d)*moebius(d)*d^2)} \\ Andrew Howroyd, Oct 25 2019

Formula

a(1) = 1; a(n) = -Sum_{d|n, dA057660(n/d) * a(d).
a(n) = Sum_{d|n} phi(n/d) * mu(d) * d^2.
Multiplicative with a(p) = p - 1 - p^2, and a(p^e) = -p^(e-1) * (p-1)^2, for e > 1. - Amiram Eldar, Dec 03 2022
a(n) = Sum_{k = 1..n} gcd(k, n)^2 * mu(gcd(k, n)) (follows from an identity of Cesàro. See, for example, Bordelles, Lemma 1). - Peter Bala, Jan 16 2024

A328641 Dirichlet g.f.: zeta(s)^2 / zeta(s-1)^2.

Original entry on oeis.org

1, -2, -4, -1, -8, 8, -12, 0, 0, 16, -20, 4, -24, 24, 32, 1, -32, 0, -36, 8, 48, 40, -44, 0, 8, 48, 4, 12, -56, -64, -60, 2, 80, 64, 96, 0, -72, 72, 96, 0, -80, -96, -84, 20, 0, 88, -92, -4, 24, -16, 128, 24, -104, -8, 160, 0, 144, 112, -116, -32, -120, 120, 0, 3, 192
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 23 2019

Keywords

Comments

Dirichlet inverse of A029935.
Dirichlet convolution of A023900 with itself.
Inverse Moebius transform of A101035.

Crossrefs

Programs

  • Mathematica
    a[1] = 1; a[n_] := -Sum[DirichletConvolve[EulerPhi[j], EulerPhi[j], j, n/d] a[d], {d, Most @ Divisors[n]}]; Table[a[n], {n, 1, 65}]
    f[p_, e_] := If[e == 1, 2*(1 - p), (p - 1)*(e*p - p - e - 1)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Dec 03 2022 *)
  • PARI
    seq(n)={dirdiv(vector(n, n, n==1), vector(n, n, sumdiv(n, d, eulerphi(d) * eulerphi(n/d))))} \\ Andrew Howroyd, Oct 25 2019

Formula

a(1) = 1; a(n) = -Sum_{d|n, dA029935(n/d) * a(d).
a(n) = Sum_{d|n} A101035(d).
Multiplicative with a(p) = 2*(1-p), and a(p^e) = (p-1)*(e*p-p-e-1) for e > 1. - Amiram Eldar, Dec 03 2022

A347095 Sum of Pillai's arithmetical function (A018804) and its Dirichlet inverse.

Original entry on oeis.org

2, 0, 0, 9, 0, 30, 0, 21, 25, 54, 0, 35, 0, 78, 90, 49, 0, 51, 0, 63, 130, 126, 0, 95, 81, 150, 85, 91, 0, 0, 0, 113, 210, 198, 234, 172, 0, 222, 250, 171, 0, 0, 0, 147, 153, 270, 0, 235, 169, 147, 330, 175, 0, 231, 378, 247, 370, 342, 0, 405, 0, 366, 221, 257, 450, 0, 0, 231, 450, 0, 0, 424, 0, 438, 245, 259, 546
Offset: 1

Views

Author

Antti Karttunen, Aug 18 2021

Keywords

Comments

No negative terms in range 1 .. 2^20.
Apparently, A030059 gives the positions of all zeros.

Crossrefs

Programs

  • PARI
    up_to = 16384;
    A018804(n) = sumdiv(n, d, n*eulerphi(d)/d); \\ From A018804
    DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(dA018804(n)));
    A101035(n) = v101035[n];
    A347095(n) = (A018804(n)+A101035(n));

Formula

a(n) = A018804(n) + A101035(n).
For n > 1, a(n) = -Sum_{d|n, 1A018804(d) * A101035(n/d).
For all n >= 1, a(A030059(n)) = 0, a(A030229(n)) = 2*A018804(A030229(n)).

A351402 G.f. A(x) satisfies: 1 / (1 - x) = Product_{i>=1, j>=1} A(x^(i*j)).

Original entry on oeis.org

1, 1, -1, -3, -1, 1, 4, 2, -2, -5, 4, 2, -2, -10, 3, 10, 21, -15, -26, -23, 34, 28, 25, -54, -18, 2, 67, -48, -22, -55, 116, 44, 37, -227, -10, 32, 295, -85, -76, -336, 254, 74, 250, -451, 59, -127, 672, -294, -69, -761, 740, 77, 657, -1208, 59, -450, 1700, -487, 241, -1892, 1202
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 10 2022

Keywords

Comments

Euler transform of A007427.

Crossrefs

Programs

  • Mathematica
    nmax = 60; A007427[n_] := Sum[MoebiusMu[d] MoebiusMu[n/d], {d, Divisors[n]}]; CoefficientList[Series[Product[1/(1 - x^k)^A007427[k], {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f. A(x) satisfies: 1 / (1 - x) = Product_{k>=1} A(x^k)^A000005(k).
G.f.: Product_{k>=1} 1 / (1 - x^k)^A007427(k).
G.f.: exp( Sum_{k>=1} A101035(k) * x^k / k ).
a(0) = 1; a(n) = (1/n) * Sum_{k=1..n} A101035(k) * a(n-k).
Showing 1-10 of 12 results. Next