cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A113059 a(n) = n! * Sum_{k=0..n} A000296(k)/k!.

Original entry on oeis.org

1, 1, 3, 10, 44, 231, 1427, 10151, 81923, 740732, 7425042, 81773715, 981864897, 12767876941, 178774288331, 2681781213130, 42909715480460, 729474427239587, 13130613291110603, 249482261007109579, 4989650444408388515, 104782705832468197252, 2305219956684224457858
Offset: 0

Views

Author

Karol A. Penson, Oct 12 2005

Keywords

Comments

Number of set partitions of [n] where the k-th singletons are k-colored and all other blocks are unicolored. - Alois P. Heinz, Apr 29 2025

Crossrefs

Programs

  • Magma
    m:=25; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(Exp(x)-1-x)/(1-x))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, May 23 2018
  • Maple
    b:= proc(n, k) option remember; `if`(n=0, 1, k*b(n-1, k+1)+
          add(b(n-j, k)*binomial(n-1, j-1), j=2..n))
        end:
    a:= n-> b(n, 1):
    seq(a(n), n=0..22);  # Alois P. Heinz, Apr 29 2025
    # second Maple program:
    b:= proc(n, k, m) option remember; `if`(n=0, k!, `if`(k>0,
          b(n-1, k-1, m+1)*k, 0)+m*b(n-1, k, m)+b(n-1, k+1, m))
        end:
    a:= n-> b(n, 0$2):
    seq(a(n), n=0..22);  # Alois P. Heinz, Apr 29 2025
  • Mathematica
    With[{nmax = 50}, CoefficientList[Series[Exp[Exp[x] - 1 - x]/(1 - x), {x, 0, nmax}], x]*Range[0, nmax]!] (* G. C. Greubel, May 23 2018 *)
  • PARI
    x='x+O('x^30); Vec(serlaplace( exp(exp(x)-1-x)/(1-x))) \\ G. C. Greubel, May 23 2018
    

Formula

a(n) = (-1)^n*n!*Sum_{k >=0} LaguerreL(n, -n-1, k-1)/k!/exp(1), n>=0.
E.g.f.: exp(exp(x)-1-x)/(1-x).
a(n) ~ exp(exp(1)-2) * n!. - Vaclav Kotesovec, Jun 26 2022

A101055 E.g.f.: exp(exp(x)-1)/(1-x)^3.

Original entry on oeis.org

1, 4, 20, 119, 819, 6397, 55919, 541144, 5746596, 66475311, 832418065, 11222752125, 162133146877, 2499401777680, 40960858008040, 711240364356155, 13045720176453587, 252079975222183461, 5118581045978055067, 108972887981432267708, 2427417968714846394712, 56467770394205361146187
Offset: 0

Views

Author

Karol A. Penson, Nov 29 2004

Keywords

Comments

Sequence appears in the problem of normal ordering of functions of boson operators.

Crossrefs

Programs

  • Mathematica
    With[{nn=30},CoefficientList[Series[Exp[Exp[x]-1]/(1-x)^3,{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Aug 11 2021 *)

Formula

a(n) = ((-1)^n*n!/e)*Sum_{k>=0} L(n,-n-3,k)/k!, where L is a generalized Laguerre polynomial.
a(n) = (1/2)*Sum_{k=0..n} binomial(n,k)*(k + 2)!*Bell(n-k), where Bell() = A000110. - Ilya Gutkovskiy, May 24 2018
a(n) ~ exp(exp(1)-1) * n^2 * n! / 2. - Vaclav Kotesovec, Jun 26 2022

Extensions

Terms after a(15) from Ilya Gutkovskiy, May 24 2018

A305051 a(n) = n! * [x^n] exp(exp(x) - 1)/(1 - x)^n.

Original entry on oeis.org

1, 2, 12, 119, 1655, 29647, 649925, 16852656, 504519916, 17124927207, 649856846635, 27262957861405, 1252893494644357, 62593349657218070, 3377648236341185084, 195782612085816693995, 12131925601060324633027, 800321307922970722566527, 55998398887720317868148977
Offset: 0

Views

Author

Ilya Gutkovskiy, May 24 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n! SeriesCoefficient[Exp[Exp[x] - 1]/(1 - x)^n, {x, 0, n}], {n, 0, 18}]
    Table[(-1)^n n!/Exp[1] Sum[LaguerreL[n,-2 n, k]/k!, {k, 0, Infinity}], {n, 0, 18}]
    Join[{1}, Table[1/(n - 1)! Sum[Binomial[n, k] (n + k - 1)! BellB[n - k], {k, 0, n}], {n, 18}]]

Formula

a(n) = ((-1)^n*n!/exp(1))*Sum_{k>=0} Laguerre(n,-2*n,k)/k!.
a(0) = 1; a(n) = (1/(n - 1)!)*Sum_{k=0..n} binomial(n,k)*(n + k - 1)!*Bell(n-k), where Bell() = A000110.
a(n) ~ c * n^n * 4^n / exp(n), where c = exp(exp(1/2) - 1)/sqrt(2) = 1.3527609882698012767793757868699146219161180684881726130481416807461987206887... - Vaclav Kotesovec, May 11 2021, updated Mar 18 2024
Showing 1-3 of 3 results.