cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A070003 Numbers divisible by the square of their largest prime factor.

Original entry on oeis.org

4, 8, 9, 16, 18, 25, 27, 32, 36, 49, 50, 54, 64, 72, 75, 81, 98, 100, 108, 121, 125, 128, 144, 147, 150, 162, 169, 196, 200, 216, 225, 242, 243, 245, 250, 256, 288, 289, 294, 300, 324, 338, 343, 361, 363, 375, 392, 400, 432, 441, 450, 484, 486, 490, 500, 507
Offset: 1

Views

Author

Labos Elemer, May 07 2002

Keywords

Comments

Numbers n such that P(phi(n)) - phi(P(n)) = 1, where P(x) is the largest prime factor of x. P(phi(n)) - phi(P(n)) = A006530(A000010(n)) - A000010(A006530(n)).
Numbers n such that the value of the commutator of phi and P functions at n is -1.
Equivalently, n such that n and phi(n) have the same largest prime factor since Phi(p) = p-1 if p is prime. - Benoit Cloitre, Jun 08 2002
Since n is divisible by P(n)^2, n cannot divide P(n)! and so A057109 is a supersequence. Hence all A002034(a(n)) are composite. - Jonathan Sondow, Dec 28 2004
A225546 defines a self-inverse bijection between this sequence and A335740, considered as sets. - Peter Munn, Jul 19 2020

Crossrefs

Subsequence of A057109, A122145.
Complement within A020725 of A102750.
Related to A335740 via A225546.
A195212 is a subsequence.
Cf. A319988 (characteristic function). Positions of odd terms > 1 in A122111.

Programs

  • Maple
    isA070003 := proc(n)
        if modp(n,A006530(n)^2) = 0 then # code re-use
            true;
        else
            false;
        end if;
    end proc:
    A070003 := proc(n)
        option remember ;
        if n =1 then
            4;
        else
            for a from procname(n-1)+1 do
                if isA070003(a) then
                    return a
                end if;
            end do:
        end if;
    end proc:
    seq( A070003(n),n=1..80) ; # R. J. Mathar, Jun 27 2024
  • Mathematica
    p[n_] := FactorInteger[n][[-1, 1]]; ep[n_] := EulerPhi[n]; fQ[n_] := p[ep[n]] == 1 + ep[p[n]]; Select[ Range[ 510], fQ] (* Robert G. Wilson v, Mar 26 2012 *)
    Select[Range[500], FactorInteger[#][[-1,2]] > 1 &] (* T. D. Noe, Dec 06 2012 *)
  • PARI
    for(n=3,1000,if(component(component(factor(n),1),omega(n))==component(component(factor(eulerphi(n)),1),omega(eulerphi(n))),print1(n,",")))
    
  • PARI
    is(n)=my(f=factor(n)[,2]);f[#f]>1 \\ Charles R Greathouse IV, Mar 21 2012
    
  • PARI
    sm(lim,mx)=if(mx==2,return(vector(log(lim+.5)\log(2)+1,i,1<<(i-1))));my(v=[1]);forprime(p=2,min(mx,lim),v=concat(v,p*sm(lim\p,p)));vecsort(v)
    list(lim)=my(v=[]);forprime(p=2,sqrt(lim),v=concat(v,p^2*sm(lim\p^2,p)));vecsort(v) \\ Charles R Greathouse IV, Mar 27 2012
    
  • Python
    from sympy import factorint
    def ok(n): f = factorint(n); return f[max(f)] >= 2
    print(list(filter(ok, range(4, 508)))) # Michael S. Branicky, Apr 08 2021

Formula

Erdős proved that there are x * exp(-(1 + o(1))sqrt(log x log log x)) members of this sequence up to x. - Charles R Greathouse IV, Mar 26 2012

Extensions

New name from Jonathan Sondow and Charles R Greathouse IV, Mar 27 2012

A122379 Numbers n such that S(n)! > n^2 > P(n)!, where S(n)! is the smallest factorial divisible by n and P(n) is the greatest prime factor of n.

Original entry on oeis.org

4, 9, 16, 18, 25, 27, 32, 50, 54, 64, 75, 81, 96, 98, 100, 108, 125, 128, 135, 147, 150, 160, 162, 175, 189, 192, 196, 200, 216, 225, 243, 245, 250, 256, 270, 294, 300, 324, 343, 350, 375, 378, 392, 400, 405, 432, 441, 450, 486, 490, 500, 512, 525, 540, 567
Offset: 1

Views

Author

Jonathan Sondow, Sep 03 2006

Keywords

Comments

It is conjectured that n^2 < P(n)! for almost all n. It is known that S(n) = P(n) for almost all n. Clearly, S(n) >= P(n) for all n > 1.

Examples

			S(9)! = 6! = 720 > 81 = 9^2 > 6 = 3! = P(9)!, so 9 is a member.
		

Crossrefs

Programs

  • Mathematica
    s[n_] := For[k = 1, True, k++, If[Divisible[k!, n], Return[k]]];
    p[n_] := FactorInteger[n][[-1, 1]];
    okQ[n_] := s[n]! > n^2 > p[n]!;
    Select[Range[1000], okQ] (* Jean-François Alcover, Jan 27 2019 *)

A048839 Numbers k dividing P(k)!, where P(k) is the largest prime factor of k.

Original entry on oeis.org

2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 20, 21, 22, 23, 26, 28, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 51, 52, 53, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 76, 77, 78, 79, 82, 83, 84, 85, 86, 87, 88, 89, 91, 92, 93, 94
Offset: 1

Views

Author

Charles T. Le (charlestle(AT)yahoo.com)

Keywords

Comments

Solutions to Diophantine equation P(k) = K(k), where P(k) is the largest prime which divides k and K(k) is the Kempner function A002034.

References

  • P. Erdős and C. Ashbacher, Thoughts of Pal Erdos on Some Smarandache Notions, Smarandache Notions Journal, Vol. 8, No. 1-2-3, 1997, 220-224.

Crossrefs

Complement is A057109.

Programs

  • Mathematica
    Select[Range[2, 100], Divisible[FactorInteger[#][[-1, 1]]!, #] &] (* Amiram Eldar, May 23 2024 *)
  • PARI
    is(n)=my(s=factor(n)[, 1]); s[#s]!%n==0 \\ Charles R Greathouse IV, Sep 20 2012

Formula

a(n) ~ n. - Charles R Greathouse IV, Sep 20 2012

Extensions

Corrected and extended by Naohiro Nomoto, Jul 14 2001

A102067 Numbers k such that k does not divide P(k)! even though P(k)^2 is not a factor of k, where P(k) is the largest prime factor of k.

Original entry on oeis.org

12, 24, 45, 48, 80, 90, 96, 135, 160, 175, 180, 189, 192, 224, 240, 270, 320, 350, 360, 378, 384, 405, 448, 480, 525, 539, 540, 567, 637, 640, 672, 700, 720, 756, 768, 810, 875, 896, 945, 960, 1050, 1078, 1080, 1120, 1134, 1215, 1274, 1280, 1344, 1375, 1400, 1440
Offset: 1

Views

Author

Jonathan Sondow, Dec 28 2004

Keywords

Comments

Clearly, if P(k)^2 is a factor of k, then k does not divide P(k)!. Each member shows that the converse is false.
k is a member if and only if k is in A057109 but not in A070003.

Examples

			12 does not divide P(12)! = 3! and 3^2 is not a factor of 12.
		

Crossrefs

Programs

  • Mathematica
    q[n_] := Module[{p = FactorInteger[n][[-1, 1]]}, !Divisible[n, p^2] && !Divisible[p!, n]]; Select[Range[1500], q] (* Amiram Eldar, Mar 30 2021 *)
  • PARI
    isok(n) = {my(f = factor(n)); my(P = f[#f~,1]); (P! % n) && (n % P^2);} \\ Michel Marcus, Sep 16 2015

Extensions

More terms from Michel Marcus, Sep 16 2015

A122380 Numbers k such that k^2 > P(k)!, where P(k) is the greatest prime factor of k.

Original entry on oeis.org

2, 3, 4, 6, 8, 9, 12, 15, 16, 18, 20, 24, 25, 27, 30, 32, 36, 40, 45, 48, 50, 54, 60, 64, 72, 75, 80, 81, 84, 90, 96, 98, 100, 105, 108, 112, 120, 125, 126, 128, 135, 140, 144, 147, 150, 160, 162, 168, 175, 180, 189, 192, 196, 200, 210, 216, 224, 225, 240, 243, 245
Offset: 1

Views

Author

Jonathan Sondow, Sep 03 2006

Keywords

Comments

It is conjectured that k^2 < P(k)! for almost all k.

Examples

			15^2 = 225 > 120 = 5! = P(15)!, so 15 is a member.
		

Crossrefs

Programs

  • Mathematica
    Reap[For[n = 2, n <= 250, n++, If[n^2 > FactorInteger[n][[-1, 1]]!, Print[n]; Sow[n]]]][[2, 1]] (* Jean-François Alcover, Feb 04 2019 *)
  • PARI
    smooth(P:vec, lim)=my(v=List([1]), nxt=vector(#P, i, 1), indx, t); while(1, t=vecmin(vector(#P, i, v[nxt[i]]*P[i]), &indx); if(t>lim, break); if(t>v[#v], listput(v, t)); nxt[indx]++); Vec(v)
    list(lim)=my(v=List([2]),u,lower,upper=2,p=2); while(1, lower=upper+1; p=nextprime(p+1); upper=min(sqrtint(p!), lim); if(lower>lim, break); u=select(q->q>=lower, smooth(primes([2,p-1]),upper)); for(i=1,#u, listput(v,u[i]))); Vec(v) \\ Charles R Greathouse IV, Nov 09 2021

A333978 Numbers of the form b_1 * b_2 * ... * b_t, where b_1 = 1 and b_(i + 1) - b_i = 0 or 1.

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 16, 18, 24, 32, 36, 48, 54, 64, 72, 96, 108, 120, 128, 144, 162, 192, 216, 240, 256, 288, 324, 360, 384, 432, 480, 486, 512, 576, 600, 648, 720, 768, 864, 960, 972, 1024, 1080, 1152, 1200, 1296, 1440, 1458, 1536, 1728, 1800, 1920, 1944, 2048
Offset: 1

Views

Author

Peter Kagey, Sep 20 2020

Keywords

Comments

This sequence gives the distinct values in A284001, sorted.
If m and k are in this sequence, then so is their product m*k.
If a prime p divides a(n), then so does p!.
A001013 is a subsequence.
Define a set S of polynomials by: (i) 1 is in S; (ii) if P is in S, then x*P and dP/dx are in S; (iii) if the repeated application of (i) and (ii) fails to prove that P is in S then P is not in S. This sequence enumerates the elements of S of degree 0. - Luc Rousseau, Aug 20 2022
Numbers k divisible by A102068(k) (or in other words, numbers k divisible by h(k)! where h(k) is the largest prime factor of k). - David A. Corneth, Aug 20 2022

Examples

			The first 11 terms can be written as
   1 = 1
   2 = 1 * 2
   4 = 1 * 2 * 2
   6 = 1 * 2 * 3
   8 = 1 * 2 * 2 * 2
  12 = 1 * 2 * 2 * 3
  16 = 1 * 2 * 2 * 2 * 2
  18 = 1 * 2 * 3 * 3
  24 = 1 * 2 * 3 * 4 or 1 * 2 * 2 * 2 * 3
  32 = 1 * 2 * 2 * 2 * 2 * 2
  36 = 1 * 2 * 2 * 3 * 3
		

Crossrefs

Programs

  • PARI
    is(n) = if(n==1, return(1)); my(f = factor(n), p = f[#f~, 1]); n%p! == 0 \\ David A. Corneth, Sep 05 2022
  • Python
    import heapq
    from math import factorial
    from sympy import nextprime
    from itertools import islice
    def agen(): # generator of terms
        oldv, h, primes, nextp, nextfact = 0, [(1, 1)], [], 0, 0
        while True:
            v, maxp = heapq.heappop(h)
            if v != oldv:
                yield v; oldv = v
                while nextfact < v:
                    nextp = nextprime(nextp); nextfact = factorial(nextp)
                    primes.append(nextp); heapq.heappush(h, (nextfact, nextp))
                for p in primes:
                    if p <= maxp: heapq.heappush(h, (v*p, max(maxp, p)))
                    else: break
    print(list(islice(agen(), 60))) # Michael S. Branicky, Aug 20 2022
    
Showing 1-6 of 6 results.