cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A102214 Expansion of (1 + 4*x + 4*x^2)/((1+x)*(1-x)^3).

Original entry on oeis.org

1, 6, 16, 30, 49, 72, 100, 132, 169, 210, 256, 306, 361, 420, 484, 552, 625, 702, 784, 870, 961, 1056, 1156, 1260, 1369, 1482, 1600, 1722, 1849, 1980, 2116, 2256, 2401, 2550, 2704, 2862, 3025, 3192, 3364, 3540, 3721, 3906, 4096, 4290, 4489, 4692, 4900
Offset: 0

Views

Author

Creighton Dement, Feb 17 2005

Keywords

Comments

A floretion-generated sequence.
a(n) gives the number of triples (x,y,x+y) with positive integers satisfying x < y and x + y <= 3*n. - Marcus Schmidt (marcus-schmidt(AT)gmx.net), Jan 13 2006
Number of different partitions of numbers x + y = z such that {x,y,z} are integers {1,2,3,...,3n} and z > y > x. - Artur Jasinski, Feb 09 2010
Second bisection preceded by zero is A152743. - Bruno Berselli, Oct 25 2011
a(n) has no final digit 3, 7, 8. - Paul Curtz, Mar 04 2020
One odd followed by three evens.
From Paul Curtz, Mar 06 2020: (Start)
b(n) = 0, 1, 6, 16, 30, 49, ... = 0, a(n).
( 25, 12, 4, 0, 1, 6, 16, 30, ...
-13, -8, -4 1, 5, 10, 14, 19, ...
5, 4, 5, 4, 5, 4, 5, 4, ... .)
b(-n) = 0, 4, 12, 25, 42, 64, 90, 121, ... .
A154589(n) are in the main diagonal of b(n) and b(-n). (End)

Crossrefs

Programs

  • Magma
    [(6*n*(3*n+4)+(-1)^n+7)/8: n in [0..60]]; // Vincenzo Librandi, Oct 26 2011
    
  • Mathematica
    aa = {}; Do[i = 0; Do[Do[Do[If[x + y == z, i = i + 1], {x, y + 1, 3 n}], {y, 1, 3 n}], {z, 1, 3 n}]; AppendTo[aa, i], {n, 1, 20}]; aa (* Artur Jasinski, Feb 09 2010 *)
  • PARI
    a(n)=(6*n*(3*n+4)+(-1)^n+7)/8 \\ Charles R Greathouse IV, Apr 16 2020

Formula

G.f.: -(4*x^2 + 4*x + 1)/((x+1)*(x-1)^3) = (1+2*x)^2/((1+x)*(1-x)^3).
a(2n) = A016778(n) = (3n+1)^2.
a(n) + a(n+1) = A038764(n+1).
a(n) = floor( (3*n+2)/2 ) * ceiling( (3*n+2)/2 ). - Marcus Schmidt (marcus-schmidt(AT)gmx.net), Jan 13 2006
a(n) = (6*n*(3*n+4) + (-1)^n+7)/8. - Bruno Berselli, Oct 25 2011
a(n) = A198392(n) + A198392(n-1). - Bruno Berselli, Nov 06 2011
From Paul Curtz, Mar 04 2020: (Start)
a(n) = A006578(n) + A001859(n) + A077043(n+1).
a(n) = A274221(2+2*n).
a(20+n) - a(n) = 30*(32+3*n).
a(1+2*n) = 3*(1+n)*(2+3*n).
a(n) = A047237(n) * A047251(n).
a(n) = A001651(n+1) * A032766(n).(End)
E.g.f.: ((4 + 21*x + 9*x^2)*cosh(x) + 3*(1 + 7*x + 3*x^2)*sinh(x))/4. - Stefano Spezia, Mar 04 2020

Extensions

Definition rewritten by Bruno Berselli, Oct 25 2011