cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A102489 Take the decimal representation of n and read it as if it were written in hexadecimal.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 112
Offset: 0

Views

Author

Reinhard Zumkeller, Jan 12 2005

Keywords

Comments

List of numbers in base-16 representation that can be written with decimal digits.
Early in the sequence there are blocks recurring as a(n) = a(n-10)+16, but this pattern starts to fail when we reach 160, 161, ... with hex-representations A0, A1, ... which cannot be written with decimal digits. - Rick L. Shepherd, Jun 08 2012
Binary Coded Decimal (BCD) codes, common in electronics, when interpreted as plain binary-coded integers. For example, number 39 is BCD coded in two nibbles as 0011 1001 which is the binary expansion of 57; hence, taking into account the offset, a(1+39) = 57. - Stanislav Sykora, Jun 09 2012
Integers that avoid letters in their hexadecimal expansion. - Eliora Ben-Gurion, Aug 28 2019

Examples

			10 in decimal is 16 in base 16, so a(10)=16.
		

Crossrefs

Cf. A090725 (the subsequence of primes).

Programs

  • Haskell
    import Data.Maybe (fromJust, mapMaybe)
    a102489 n = a102489_list !! (n-1)
    a102489_list = mapMaybe dhex [0..] where
       dhex 0                         = Just 0
       dhex x | d > 9 || y == Nothing = Nothing
              | otherwise             = Just $ 16 * fromJust y + d
              where (x', d) = divMod x 16; y = dhex x'
    -- Reinhard Zumkeller, Jul 06 2012
  • Maple
    o10:= n -> min(padic:-ordp(n,2),padic:-ordp(n,5)):
    d:= [0,seq((2*16^o10(n)+3)/5, n=1..1000)]:
    ListTools:-PartialSums(d); # Robert Israel, Aug 30 2015
  • Mathematica
    Table[FromDigits[IntegerDigits[n], 16], {n, 0, 70}] (* Ivan Neretin, Aug 12 2015 *)

Formula

a(n) - a(n-1) = (2*16^A122840(n) + 3)/5. - Robert Israel, Aug 30 2015

Extensions

Edited by N. J. A. Sloane, Feb 08 2014 (changed definition, moved old definition to comment, changed offset and b-file).

A102487 Numbers in base-12 representation that can be written with decimal digits.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 84, 85, 86
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 12 2005

Keywords

Comments

Numbers that are only in this sequence or only in A039274 but not in both are n= 131, 142, 275, 286, 419, 430 etc: see A039558. [From R. J. Mathar, Aug 30 2008]

Crossrefs

Complement of A102488; A102489, A102491, A102493.
Cf. A033048 (subsequence).

Programs

  • Haskell
    import Data.List (unfoldr)
    a102487 n = a102487_list !! (n-1)
    a102487_list = filter (all (< 10) . unfoldr (\x ->
       if x == 0 then Nothing else Just $ swap $ divMod x 12)) [0..]
    -- Reinhard Zumkeller, Apr 18 2011
    
  • Mathematica
    fQ[n_] := Last@ Union@ IntegerDigits[n, 12] < 10; Select[ Range[0, 86], fQ] (* Robert G. Wilson v, Apr 17 2012 *)
  • PARI
    {for(testn=0,87,
    lgt=1;
    for(i=1,1000,if(12^i > testn,lgt=i;break()));
    atst=testn;pasr=1;
    for(j=1,lgt,lasd=atst%12;
    if(lasd<10,atst=(atst-lasd)/12,pasr=0;break()));
    if(pasr==1,print1(testn,", ")))}
    \\ Douglas Latimer, Apr 17 2012
    
  • Python
    A102487_list = [int(str(x), 12) for x in range(10**6)] # Chai Wah Wu, Apr 09 2016

A102491 Numbers whose base-20 representation can be written with decimal digits.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 120, 121, 122, 123, 124, 125, 126
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 12 2005

Keywords

Comments

a(n) = A118761(n) for n<=50. - Reinhard Zumkeller, May 01 2006

Crossrefs

Complement of A102492; Cf. A102487, A102489, A102493. Cf. A037454, A037462, A007091.

Programs

  • Haskell
    import Data.List (unfoldr)
    a102491 n = a102491_list !! (n-1)
    a102491_list = filter (all (<= 9) . unfoldr
       (\x -> if x == 0 then Nothing else Just $ swap $ divMod x 20)) [0..]
    -- Reinhard Zumkeller, Jun 27 2013
    
  • Maple
    seq(n + (1/2)*add(20^k*floor(n/10^k), k = 1..floor(ln(n)/ln(10))), n = 1..100); # Peter Bala, Dec 01 2016
  • Mathematica
    Select[Range@ 126, Total@ Take[Most@ DigitCount[#, 20], -10] == 0 &] (* Michael De Vlieger, Apr 09 2016 *)
  • PARI
    isok(n) = (n==0) || ((d=digits(n, 20)) && (vecmax(d) < 10)); \\ Michel Marcus, Apr 09 2016
    
  • PARI
    a(n) = fromdigits(digits(n-1),20) \\ Ruud H.G. van Tol, Dec 08 2022
  • Python
    A102491_list = [int(str(x), 20) for x in range(10**6)] # Chai Wah Wu, Apr 09 2016
    

Formula

From Peter Bala, Dec 01 2016: (Start)
If n = Sum_{i = 0..m} d(i)*10^i is the decimal expansion of n then a(n+1) = Sum_{i = 0..m} d(i)*20^i.
a(n+1) = n + 1/2*Sum_{k >= 1} 20^k*floor(n/10^k). Cf. A037454, A037462 and A007091.
a(1) = 0; a(n+1) = 20*a(n/10+1) if n == 0 (mod 10) else a(n+1) = a(n) + 1. (End)
G.f. g(x) satisfies g(x) = 20*Sum_{1<=k<=9} x^k*g(x^10)/x^9 + Sum_{1<=k<=9} k*x^(k+1)/(1-x^10). - Robert Israel, Dec 01 2016

A102494 Numbers in base-60 representation that cannot be written with decimal digits.

Original entry on oeis.org

10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 12 2005

Keywords

Examples

			200 = 3*60^1 + 20*60^0 = '3K', therefore 200 is a term.
		

References

  • Mohammad K. Azarian, Meftah al-hesab: A Summary, MJMS, Vol. 12, No. 2, Spring 2000, pp. 75-95. Mathematical Reviews, MR 1 764 526. Zentralblatt MATH, Zbl 1036.01002.
  • Mohammad K. Azarian, A Summary of Mathematical Works of Ghiyath ud-din Jamshid Kashani, Journal of Recreational Mathematics, Vol. 29(1), pp. 32-42, 1998.

Crossrefs

Complement of A102493; A102488, A102490, A102492.

Programs

  • Haskell
    import Data.List (unfoldr)
    a102494 n = a102494_list !! (n-1)
    a102494_list = filter (any (> 9) . unfoldr
       (\x -> if x == 0 then Nothing else Just $ swap $ divMod x 60)) [0..]
    -- Reinhard Zumkeller, Jun 27 2013
  • Mathematica
    Select[Range[100],Max[IntegerDigits[#,60]]>9&] (* Harvey P. Dale, Dec 27 2012 *)
Showing 1-4 of 4 results.