cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A032563 Numbers k such that A102489(k) is divisible by k.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 1038, 1040, 2078, 2080, 2118, 2120, 3158, 3160, 3200, 4198, 4238, 4240, 5278, 5280, 5318, 5320, 6358, 6360, 6400, 7398, 7438, 7440, 8478, 8480, 8518, 8520, 9558, 9560, 9600, 12480, 25440, 38400, 112308, 449440
Offset: 1

Views

Author

Patrick De Geest, Apr 15 1998

Keywords

Examples

			9_10 / 9_16 = 9/9 = 1;
4152_10 / 1038_16 = 4152/1038 = 4;
4160_10 / 1040_16 = 4160/1040 = 4;
8312_10 / 2078_16 = 8312/2078 = 4.
		

Crossrefs

Programs

  • Maple
    d:= Vector(10^7,1):
    for i from 1 to 7 do
       inds:= 10^i*[$1..10^(7-i)];
       d[inds]:= (2*16^i+3)/5;
    od:
    b:= Vector(10^7):
    b[1]:= 1:
    for i from 2 to 10^7 do
      b[i]:= b[i-1]+d[i]
    od:
    select(t-> (b[t]/ t)::integer, [$1..10^7]); # Robert Israel, Aug 30 2015
  • Mathematica
    Select[Range[16^5], IntegerQ[FromDigits[IntegerDigits[#], 16]/#] &] (* Michael De Vlieger, Aug 29 2015 *)

A237438 Double Hex-primes: let f(n) = A102489(n); then sequence lists primes p such that f(p) and f(f(p)) are also primes.

Original entry on oeis.org

2, 3, 5, 7, 11, 43, 47, 53, 59, 61, 89, 97, 101, 139, 151, 167, 199, 241, 251, 257, 269, 281, 337, 373, 443, 557, 599, 607, 647, 653, 829, 971, 1051, 1093, 1163, 1223, 1279, 1327, 1433, 1459, 1499, 1549, 1583, 1597, 1607
Offset: 1

Views

Author

Andreas Boe, Feb 07 2014

Keywords

Comments

This sequence is a subset of A103144.

Examples

			Dec61=prime -> Hex61=Dec97=prime -> Hex97=Dec151=prime.
		

Crossrefs

Cf. A102489.
Cf. A103144 (Hex-primes), A237439 (Triple Hex-primes), A237440 (Quadruple Hex-primes), A237441 (Quintuple Hex-primes).

A237439 Triple Hex-primes: let f(n) = A102489(n); then sequence lists primes p such that f(p), f(f(p)) and f(f(f(p))) are also primes.

Original entry on oeis.org

2, 3, 5, 7, 59, 61, 97, 101, 151, 257, 599, 647, 829, 1163, 1499, 1999, 2351, 2467, 2531, 2897, 2903, 3001, 3373, 4783, 4813, 5683, 6317, 6857, 6997, 7759, 8563, 8837, 8963, 9203, 9463, 9497, 9521, 10903, 10957
Offset: 1

Views

Author

Andreas Boe, Feb 07 2014

Keywords

Comments

The sequence is a subset of OEIS sequences A103144 and A237438

Examples

			Dec61=prime -> Hex61=Dec97=prime -> Hex97=Dec 151=prime -> Hex151=Dec337=prime
		

References

  • Original research by OEIS contributor Andreas Boe, Feb 2014

Crossrefs

Cf. A103144(Hex-primes), A237438 (Double Hex-primes), A237440 (Quadruple Hex-primes), A237441 (Quintuple Hex-primes)

A237440 Quadruple Hex-primes: let f(n) = A102489(n); then sequence lists primes p such that f(p), f(f(p)). f(f(f(p))) and f(f(f(f(p)))) are also primes.

Original entry on oeis.org

2, 3, 5, 7, 61, 97, 101, 257, 2531, 4783, 5683, 6317, 8963, 9463, 9497, 11593, 15683, 18757, 23687, 26251, 29611, 31271, 36011, 45497, 45979, 46853, 54869, 73379, 92557, 93761, 104173, 107857, 107981, 121607, 134047, 192091, 196853, 236729, 285599, 310081
Offset: 1

Views

Author

Andreas Boe, Feb 07 2014

Keywords

Comments

The sequence is a subset of sequences A103144, A237438, and A237439.

Examples

			Dec61=prime -> Hex61=Dec97=prime -> Hex97=Dec151=prime -> Hex151=Dec337=prime -> Hex337=Dec823=prime.
		

Crossrefs

Cf. A102489.
Cf. A103144 (Hex-primes), A237438 (Double Hex-primes), A237439 (Triple Hex-primes), A237441 (Quintuple Hex-primes).

Programs

  • Mathematica
    qhpQ[n_]:=AllTrue[Rest[NestList[FromDigits[IntegerDigits[#],16]&,n,4]], PrimeQ]; Select[Prime[Range[27000]],qhpQ] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Mar 13 2016 *)
  • PARI
    isok(p)= isprime(p) && isprime(p=hd(p)) && isprime(p=hd(p)) && isprime(p=hd(p)) && isprime(p=hd(p)); \\ Michel Marcus, Feb 09 2014

Extensions

More terms from Michel Marcus, Feb 09 2014

A237441 Quintuple Hex-primes: let f(n) = A102489(n); then sequence lists primes p such that f(p), f(f(p)), f(f(f(p))), f(f(f(f(p)))) and f(f(f(f(f(p))))) are also primes.

Original entry on oeis.org

2, 3, 5, 7, 61, 101, 196853, 516151, 548239, 568627, 595039, 603833, 648887, 1996223, 2086907, 2487227, 3322757, 3711343, 4385137, 5226049, 5288929, 5853241, 8792039, 8796187, 8982191, 10203203, 12640297, 12664129, 12845561, 13156267, 13437481, 14342431
Offset: 1

Views

Author

Andreas Boe, Feb 07 2014

Keywords

Comments

The sequence is a subset of A103144, A237438, A237439 and A237440

Examples

			Dec61=prime -> Hex61=Dec97=prime -> Hex97=Dec151=prime -> Hex151=Dec337=prime -> Hex337=Dec823=prime -> Hex823=Dec2083=prime.
		

Crossrefs

Cf. A103144(Hex-primes), A237438(Double Hex-primes), A237439(Triple Hex-primes), A237440(Quadruple Hex-primes).

Programs

  • PARI
    hd(n) = my(d = digits(n)); sum(i=1, #d, 16^(i-1)*d[#d-i+1]);
    isok(p) = isprime(p) && isprime(p=hd(p)) && isprime(p=hd(p)) && isprime(p=hd(p)) && isprime(p=hd(p)) && isprime(p=hd(p)); \\ Michel Marcus, Feb 08 2014

Extensions

More terms from Michel Marcus, Feb 08 2014

A102487 Numbers in base-12 representation that can be written with decimal digits.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 84, 85, 86
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 12 2005

Keywords

Comments

Numbers that are only in this sequence or only in A039274 but not in both are n= 131, 142, 275, 286, 419, 430 etc: see A039558. [From R. J. Mathar, Aug 30 2008]

Crossrefs

Complement of A102488; A102489, A102491, A102493.
Cf. A033048 (subsequence).

Programs

  • Haskell
    import Data.List (unfoldr)
    a102487 n = a102487_list !! (n-1)
    a102487_list = filter (all (< 10) . unfoldr (\x ->
       if x == 0 then Nothing else Just $ swap $ divMod x 12)) [0..]
    -- Reinhard Zumkeller, Apr 18 2011
    
  • Mathematica
    fQ[n_] := Last@ Union@ IntegerDigits[n, 12] < 10; Select[ Range[0, 86], fQ] (* Robert G. Wilson v, Apr 17 2012 *)
  • PARI
    {for(testn=0,87,
    lgt=1;
    for(i=1,1000,if(12^i > testn,lgt=i;break()));
    atst=testn;pasr=1;
    for(j=1,lgt,lasd=atst%12;
    if(lasd<10,atst=(atst-lasd)/12,pasr=0;break()));
    if(pasr==1,print1(testn,", ")))}
    \\ Douglas Latimer, Apr 17 2012
    
  • Python
    A102487_list = [int(str(x), 12) for x in range(10**6)] # Chai Wah Wu, Apr 09 2016

A102491 Numbers whose base-20 representation can be written with decimal digits.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 120, 121, 122, 123, 124, 125, 126
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 12 2005

Keywords

Comments

a(n) = A118761(n) for n<=50. - Reinhard Zumkeller, May 01 2006

Crossrefs

Complement of A102492; Cf. A102487, A102489, A102493. Cf. A037454, A037462, A007091.

Programs

  • Haskell
    import Data.List (unfoldr)
    a102491 n = a102491_list !! (n-1)
    a102491_list = filter (all (<= 9) . unfoldr
       (\x -> if x == 0 then Nothing else Just $ swap $ divMod x 20)) [0..]
    -- Reinhard Zumkeller, Jun 27 2013
    
  • Maple
    seq(n + (1/2)*add(20^k*floor(n/10^k), k = 1..floor(ln(n)/ln(10))), n = 1..100); # Peter Bala, Dec 01 2016
  • Mathematica
    Select[Range@ 126, Total@ Take[Most@ DigitCount[#, 20], -10] == 0 &] (* Michael De Vlieger, Apr 09 2016 *)
  • PARI
    isok(n) = (n==0) || ((d=digits(n, 20)) && (vecmax(d) < 10)); \\ Michel Marcus, Apr 09 2016
    
  • PARI
    a(n) = fromdigits(digits(n-1),20) \\ Ruud H.G. van Tol, Dec 08 2022
  • Python
    A102491_list = [int(str(x), 20) for x in range(10**6)] # Chai Wah Wu, Apr 09 2016
    

Formula

From Peter Bala, Dec 01 2016: (Start)
If n = Sum_{i = 0..m} d(i)*10^i is the decimal expansion of n then a(n+1) = Sum_{i = 0..m} d(i)*20^i.
a(n+1) = n + 1/2*Sum_{k >= 1} 20^k*floor(n/10^k). Cf. A037454, A037462 and A007091.
a(1) = 0; a(n+1) = 20*a(n/10+1) if n == 0 (mod 10) else a(n+1) = a(n) + 1. (End)
G.f. g(x) satisfies g(x) = 20*Sum_{1<=k<=9} x^k*g(x^10)/x^9 + Sum_{1<=k<=9} k*x^(k+1)/(1-x^10). - Robert Israel, Dec 01 2016

A227549 Numbers that contain their base-16 representation in their decimal representation.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 357440, 357441, 357442, 357443, 357444, 357445, 357446, 357447, 357448, 357449, 1079653, 1081713, 1122966, 1123079, 1123080, 2246166, 3369253, 3371313, 3412566, 4494393, 4494400, 4535653, 5658739, 5658740, 5660793, 5660800
Offset: 1

Views

Author

Roland Kneer, Aug 05 2013

Keywords

Examples

			357440 = (57440)_16
1079653 = (107965)_16
23132273099720801084801040 = (1322730997208010848010)_16
		

Crossrefs

Subsequence of A102489.

Programs

  • Mathematica
    Select[Range[0,5661000],SequenceCount[IntegerDigits[#],IntegerDigits[#,16]]>0&] (* Harvey P. Dale, Apr 21 2023 *)

A102490 Numbers in base-16 representation that cannot be written with decimal digits.

Original entry on oeis.org

10, 11, 12, 13, 14, 15, 26, 27, 28, 29, 30, 31, 42, 43, 44, 45, 46, 47, 58, 59, 60, 61, 62, 63, 74, 75, 76, 77, 78, 79, 90, 91, 92, 93, 94, 95, 106, 107, 108, 109, 110, 111, 122, 123, 124, 125, 126, 127, 138, 139, 140, 141, 142, 143, 154, 155, 156, 157, 158, 159, 160
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 12 2005

Keywords

Examples

			42 = 2*16^1 + 10*16^0 = '2A', therefore 42 is a term.
		

Crossrefs

Complement of A102489; A102488, A102492, A102494.

Programs

  • Haskell
    import Data.List (unfoldr)
    a102490 n = a102490_list !! (n-1)
    a102490_list = filter (any (> 9) . unfoldr
       (\x -> if x == 0 then Nothing else Just $ swap $ divMod x 16)) [0..]
    -- Reinhard Zumkeller, Jun 27 2013
    
  • Mathematica
    Select[Range[200],IntegerLength[Max[IntegerDigits[#,16]]]>1&] (* Harvey P. Dale, Jun 12 2020 *)
  • Python
    def ok(n): return any(hd > '9' for hd in hex(n)[2:])
    print(list(filter(ok, range(161)))) # Michael S. Branicky, Oct 11 2021

A102493 Numbers in base-60 representation that can be written with decimal digits.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 300, 301, 302, 303, 304, 305, 306, 307, 308
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 12 2005

Keywords

References

  • Mohammad K. Azarian, Meftah al-hesab: A Summary, MJMS, Vol. 12, No. 2, Spring 2000, pp. 75-95. Mathematical Reviews, MR 1 764 526. Zentralblatt MATH, Zbl 1036.01002.
  • Mohammad K. Azarian, A Summary of Mathematical Works of Ghiyath ud-din Jamshid Kashani, Journal of Recreational Mathematics, Vol. 29(1), pp. 32-42, 1998.

Crossrefs

Complement of A102494; A102487, A102489, A102491.

Programs

  • Haskell
    import Data.List (unfoldr)
    a102493 n = a102493_list !! (n-1)
    a102493_list = filter (all (<= 9) . unfoldr
       (\x -> if x == 0 then Nothing else Just $ swap $ divMod x 60)) [0..]
    -- Reinhard Zumkeller, Jun 27 2013
  • Mathematica
    Table[Range[60n,60n+9],{n,0,6}]//Flatten (* Harvey P. Dale, Jul 06 2024 *)
Showing 1-10 of 13 results. Next