cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A158983 Coefficients of polynomials (in descending powers of x) P(n,x) := 2 + P(n-1,x)^2, where P(1,x) = x + 2.

Original entry on oeis.org

1, 2, 1, 4, 6, 1, 8, 28, 48, 38, 1, 16, 120, 544, 1628, 3296, 4432, 3648, 1446, 1, 32, 496, 4928, 35064, 189248, 800992, 2711424, 7419740, 16475584, 29610272, 42666880, 48398416, 41867904, 26125248, 10550016, 2090918, 1, 64, 2016, 41600, 631536
Offset: 1

Views

Author

Clark Kimberling, Apr 02 2009

Keywords

Examples

			Row 1: 1 2 (from x+2)
Row 2: 1 4 6 (from x^2+4x+6)
Row 3: 1 8 28 48 38
Row 4: 1 16 120 544 1628 3296 4432 3648 1446
		

Crossrefs

Cf. A158982, A158984, A158985, A158986. A102847 (row sums).

Formula

From Peter Bala, Jul 01 2015: (Start)
P(n,x) = P(n,-4 - x) for n >= 2.
P(n+1,x)= P(n,(2 + x)^2). Thus if alpha is a zero of P(n,x) then sqrt(alpha) - 2 is a zero of P(n+1,x).
Define a sequence of polynomials Q(n,x) by setting Q(1,x) = 2 + x^2 and Q(n,x) = Q(n-1, 2 + x^2) for n >= 2. Then P(n,x) = Q(n,sqrt(x)).
Q(n,x) = Q(k,Q(n-k,x)) for 1 <= k <= n-1; P(n,x) = P(k,P(n-k,x)^2) for 1 <= k <= n - 1.
n-th row sum = P(n,1) = A102847(n);
P(n,1) = P(n+1,-1) = P(n+1,-3); P(n,1) = P(n,-5) for n >= 2.
(End)

A065653 a(0) = 0, a(1) = 1, a(n) = a(n-2)*a(n-2) + 2 for n > 1.

Original entry on oeis.org

0, 1, 2, 3, 6, 11, 38, 123, 1446, 15131, 2090918, 228947163, 4371938082726, 52416803445748571, 19113842599189892819591078, 2747521283470239265968814548542043, 365338978906606237729724396156395693696687137202086
Offset: 0

Views

Author

Reinhard Zumkeller, Nov 10 2001

Keywords

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[0]==0,a[1]==1,a[n]==a[n-2]^2+2},a,{n,20}] (* Harvey P. Dale, Aug 19 2013 *)
  • PARI
    a(n)=if(n<2, n>0, 2+a(n-2)^2) /* Michael Somos, Mar 25 2006 */
    
  • PARI
    { for (n=0, 24, if (n>1, a=a2^2 + 2; a2=a1; a1=a, if (n, a=a1=1, a=a2=0)); write("b065653.txt", n, " ", a) ) } \\ Harry J. Smith, Oct 25 2009

Formula

A102847(n)=a(2n+1), A072191(n)=a(2n).

Extensions

One more term from Harvey P. Dale, Aug 19 2013

A378395 Sequence of primitive Pythagorean triples beginning with the triple (3,4,5), with each subsequent triple having as its inradius the hypotenuse of the previous triple, and with the long leg and the hypotenuse of each triple being consecutive natural numbers.

Original entry on oeis.org

3, 4, 5, 11, 60, 61, 123, 7564, 7565, 15131, 114473580, 114473581, 228947163, 26208401722874284, 26208401722874285, 52416803445748571, 1373760641735119632984407274271020, 1373760641735119632984407274271021
Offset: 1

Views

Author

Keywords

Comments

The only Pythagorean triple whose inradius is equal to r and such that its long leg and its hypotenuse are consecutive is (2r+1,2r^2+2r,2r^2+2r+1).

Examples

			Triples begin:
  3, 4, 5;
  11, 60, 61;
  123, 7564, 7565;
  15131, 114473580, 11447358;
...
		

References

  • J. M. Blanco Casado, J. M. Sánchez Muñoz, and M. A. Pérez García-Ortega, El Libro de las Ternas Pitagóricas, Preprint 2024.

Crossrefs

Cf. A102847 (short leg), A365577.

Programs

  • Mathematica
    {a0,b0,c0}={3,4,5};f[n_]:=Module[{fn0=2c0+1,fn1=((2c0+1)^2+1)/2},Do[{fn0,fn1}={2fn1+1,((2fn1+1)^2+1)/2},{n}];fn0];t[n_]:={f[n-1],(f[n-1]^2-1)/2,(f[n-1]^2+1)/2};ternas={a0,b0,c0};For[i=1,i<=6,i++,ternas=Join[ternas,t[i]]];ternas
Showing 1-3 of 3 results.