cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A065652 a(0) = 0 and a(n+1) = if a(n) - 1 is new and > 0 then a(n) - 1 else a(n)*a(n) + 1 for n >= 0.

Original entry on oeis.org

0, 1, 2, 5, 4, 3, 10, 9, 8, 7, 6, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 122, 121, 120, 119, 118, 117, 116, 115, 114, 113, 112, 111, 110, 109, 108, 107, 106, 105, 104, 103, 102, 101, 100, 99, 98, 97
Offset: 0

Views

Author

Reinhard Zumkeller, Nov 10 2001

Keywords

Comments

a(a(n)) = n: a self-inverse permutation of the natural numbers. a(x) = x iff x = A065654(k) for some k.

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = If[a[n - 1] > 1 && FreeQ[Array[a, n, 0], a[n - 1] - 1], a[n - 1] - 1, a[n - 1]^2 + 1]; a[0] = 0; Array[a, 100, 0] (* Amiram Eldar, Mar 19 2025 *)

Formula

a(A065653(k) + j) = A065653(k+1) - 1 - j for k >= 0 and 0 <= j < A065653(k+1) - A065653(k).

A102847 a(0)=1, a(n) = a(n-1)*a(n-1) + 2.

Original entry on oeis.org

1, 3, 11, 123, 15131, 228947163, 52416803445748571, 2747521283470239265968814548542043, 7548873203121950871924356140057489033996373873303512592376938613851
Offset: 0

Views

Author

Miklos Kristof, Feb 28 2005

Keywords

Comments

The Mandelbrot-process is z:=z*z+c, where z and c is complex. In our case c=2 and the initial z is 1. The process is very quickly increasing.
Prime for a(1)=3, a(2)=11, a(4)=15131; semiprime for a(3) = 123 = 3 * 41, a(5) = 228947163 = 3 * 76315721. a(6), added by Jonathan Vos Post, has 4 prime factors. a(7) = 41 * 811^2 * 106693969 * 317171188688357726699 * 8272236925540996054440172449761. When is the next prime in the sequence? - Jonathan Vos Post, Feb 28 2005
Composite for a(8), a(9), ..., a(19). a(20) is roughly 2^909982 and its primality is unknown. - Russ Cox, Apr 02 2006

Examples

			a(2)=11, a(3)=11*11+2=123.
		

Crossrefs

Bisection of A065653.

Programs

  • Maple
    a[0]:=1: for n from 1 to 10 do a[n]:=a[n-1]^2+2 od: seq(a[n],n=0..9); # Emeric Deutsch
  • Mathematica
    a[0] := 1; a[n_] := a[n - 1]^2 + 2; Table[a[n], {n, 0, 10}] (* Stefan Steinerberger, Apr 08 2006 *)
    NestList[#^2+2&,1,10] (* Harvey P. Dale, Mar 27 2023 *)
  • PARI
    a(n)=if(n<1, n==0, 2+a(n-1)^2) /* Michael Somos, Mar 25 2006 */

Formula

a(n) ~ c^(2^n), where c = 1.8249111600523655937123650418390169034... - Vaclav Kotesovec, Sep 20 2013

Extensions

a(7) from Jonathan Vos Post, Feb 28 2005
a(8) from Emeric Deutsch, Jun 13 2005

A065654 Fixed points for A065652, a permutation of the natural numbers.

Original entry on oeis.org

0, 1, 2, 4, 8, 24, 80, 784, 8288, 1053024, 115519040, 2186083514944, 26210587691915648, 9556921325803348132669824, 1373760651292040932579353684066560, 182669489453303120238622839813317479832750842872064
Offset: 0

Views

Author

Reinhard Zumkeller, Nov 10 2001

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := f[n] = If[n < 2, n, f[n - 2]^2 + 2]; a[n_] := (f[n] + f[n + 1] - 1)/2; Array[a, 15, 0] (* Amiram Eldar, Mar 19 2025 *)

Formula

a(n) = (A065653(n) + A065653(n+1) - 1) / 2.
Showing 1-3 of 3 results.