cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A102871 a(n) = a(n-3) - 5*a(n-2) + 5*a(n-1), a(0) = 1, a(1) = 3, a(2) = 10.

Original entry on oeis.org

1, 3, 10, 36, 133, 495, 1846, 6888, 25705, 95931, 358018, 1336140, 4986541, 18610023, 69453550, 259204176, 967363153, 3610248435, 13473630586, 50284273908, 187663465045, 700369586271, 2613814880038, 9754889933880, 36405744855481, 135868089488043, 507066613096690
Offset: 0

Views

Author

Creighton Dement, Mar 01 2005

Keywords

Comments

A floretion-generated sequence resulting from a particular transform of the periodic sequence (-1,1).
Floretion Algebra Multiplication Program, FAMP Code: .5em[J* ]forseq[ .25( 'i + 'j + 'k + i' + j' + k' + 'ii' + 'jj' + 'kk' + 'ij' + 'ik' + 'ji' + 'jk' + 'ki' + 'kj' + e ) ], em[J]forseq = A001834, vesforseq = (1,-1,1,-1). ForType 1A. Identity used: em[J]forseq + em[J* ]forseq = vesforseq.
Also indices of the centered triangular numbers which are triangular numbers - Richard Choulet, Oct 09 2007
Place a(n) red and b(n) blue balls in an urn; draw 2 balls without replacement. Probability(2 red balls) = 3*Probability(2 blue balls); b(n)=A101265(n). - Paul Weisenhorn, Aug 02 2010

Examples

			For n=5, a(5)=495; b(5)=286; binomial(495,2) = 122265 = 3*binomial(286,2). - _Paul Weisenhorn_, Aug 02 2010
		

Crossrefs

Cf. A001075 (first differences), A001834, A082841, A101265.

Programs

  • Maple
    a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=4*a[n-1]-a[n-2]-1 od: seq(a[n], n=1..23); # Zerinvary Lajos, Mar 08 2008
  • Mathematica
    LinearRecurrence[{5,-5,1},{1,3,10},30] (* Harvey P. Dale, Oct 04 2011 *)

Formula

2*a(n) - A001834(n) = (-1)^(n+1); a(n) = 4*a(n-1) - a(n) - 1;
G.f.: (2*x-1)/((x-1)*(x^2-4*x+1)).
Superseeker results: a(n+2) - 2a(n+1) + a(n) = A001834(n+1) (from this and the first relation involving A001834 it follows that 4a(n+1) - a(n+2) - a(n) = (-1)^n as well as the recurrence relation given for A001834 ); a(n+1) - a(n) = A001075(n+1); a(n+2) - a(n) = A082841(n+1).
a(j+3) - 3*a(j+2) - 3*a(j+1) + a(j) = -2 for all j.
a(n+1) = 2*a(n) - 1/2 + (1/2)*(12*a(n)^2 - 12*a(n) + 9)^(1/2). - Richard Choulet, Oct 09 2007
a(n) = (sqrt(12*b(n)*(b(n)-1) + 1) + 1)/2; b(n) = A101265(n). - Paul Weisenhorn, Aug 02 2010
a(n) = A001571(n) + 1. - Johannes Boot, Jun 17 2011
E.g.f.: (exp(2*x)*(cosh(sqrt(3)*x) + sqrt(3)*sinh(sqrt(3)*x)) + cosh(x) + sinh(x))/2. - Stefano Spezia, Sep 19 2023