cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A001570 Numbers k such that k^2 is centered hexagonal.

Original entry on oeis.org

1, 13, 181, 2521, 35113, 489061, 6811741, 94875313, 1321442641, 18405321661, 256353060613, 3570537526921, 49731172316281, 692665874901013, 9647591076297901, 134373609193269601, 1871582937629476513, 26067787517619401581, 363077442309042145621
Offset: 1

Views

Author

Keywords

Comments

Chebyshev T-sequence with Diophantine property. - Wolfdieter Lang, Nov 29 2002
a(n) = L(n,14), where L is defined as in A108299; see also A028230 for L(n,-14). - Reinhard Zumkeller, Jun 01 2005
Numbers x satisfying x^2 + y^3 = (y+1)^3. Corresponding y given by A001921(n)={A028230(n)-1}/2. - Lekraj Beedassy, Jul 21 2006
Mod[ a(n), 12 ] = 1. (a(n) - 1)/12 = A076139(n) = Triangular numbers that are one-third of another triangular number. (a(n) - 1)/4 = A076140(n) = Triangular numbers T(k) that are three times another triangular number. - Alexander Adamchuk, Apr 06 2007
Also numbers n such that RootMeanSquare(1,3,...,2*n-1) is an integer. - Ctibor O. Zizka, Sep 04 2008
a(n), with n>1, is the length of the cevian of equilateral triangle whose side length is the term b(n) of the sequence A028230. This cevian divides the side (2*x+1) of the triangle in two integer segments x and x+1. - Giacomo Fecondo, Oct 09 2010
For n>=2, a(n) equals the permanent of the (2n-2)X(2n-2) tridiagonal matrix with sqrt(12)'s along the main diagonal, and 1's along the superdiagonal and the subdiagonal. - John M. Campbell, Jul 08 2011
Beal's conjecture would imply that set intersection of this sequence with the perfect powers (A001597) equals {1}. In other words, existence of a nontrivial perfect power in this sequence would disprove Beal's conjecture. - Max Alekseyev, Mar 15 2015
Numbers n such that there exists positive x with x^2 + x + 1 = 3n^2. - Jeffrey Shallit, Dec 11 2017
Given by the denominators of the continued fractions [1,(1,2)^i,3,(1,2)^{i-1},1]. - Jeffrey Shallit, Dec 11 2017
A near-isosceles integer-sided triangle with an angle of 2*Pi/3 is a triangle whose sides (a, a+1, c) satisfy Diophantine equation (a+1)^3 - a^3 = c^2. For n >= 2, the largest side c is given by a(n) while smallest and middle sides (a, a+1) = (A001921(n-1), A001922(n-1)) (see Julia link). - Bernard Schott, Nov 20 2022

Examples

			G.f. = x + 13*x^2 + 181*x^3 + 2521*x^4 + 35113*x^5 + 489061*x^6 + 6811741*x^7 + ...
		

References

  • E.-A. Majol, Note #2228, L'Intermédiaire des Mathématiciens, 9 (1902), pp. 183-185. - N. J. A. Sloane, Mar 03 2022
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Bisection of A003500/4. Cf. A006051, A001921, A001922.
One half of odd part of bisection of A001075. First differences of A007655.
Cf. A077417 with companion A077416.
Row 14 of array A094954.
A122571 is another version of the same sequence.
Row 2 of array A188646.
Cf. similar sequences listed in A238379.
Cf. A028231, which gives the corresponding values of x in 3n^2 = x^2 + x + 1.
Similar sequences of the type cosh((2*m+1)*arccosh(k))/k are listed in A302329. This is the case k=2.

Programs

  • Magma
    [((2 + Sqrt(3))^(2*n - 1) + (2 - Sqrt(3))^(2*n - 1))/4: n in [1..50]]; // G. C. Greubel, Nov 04 2017
  • Maple
    A001570:=-(-1+z)/(1-14*z+z**2); # Simon Plouffe in his 1992 dissertation.
  • Mathematica
    NestList[3 + 7*#1 + 4*Sqrt[1 + 3*#1 + 3*#1^2] &, 0, 24] (* Zak Seidov, May 06 2007 *)
    f[n_] := Simplify[(2 + Sqrt@3)^(2 n - 1) + (2 - Sqrt@3)^(2 n - 1)]/4; Array[f, 19] (* Robert G. Wilson v, Oct 28 2010 *)
    a[c_, n_] := Module[{},
       p := Length[ContinuedFraction[ Sqrt[ c]][[2]]];
       d := Denominator[Convergents[Sqrt[c], n p]];
       t := Table[d[[1 + i]], {i, 0, Length[d] - 1, p}];
       Return[t];
      ] (* Complement of A041017 *)
    a[12, 20] (* Gerry Martens, Jun 07 2015 *)
    LinearRecurrence[{14, -1}, {1, 13}, 19] (* Jean-François Alcover, Sep 26 2017 *)
    CoefficientList[Series[x (1-x)/(1-14x+x^2),{x,0,20}],x] (* Harvey P. Dale, Sep 18 2024 *)
  • PARI
    {a(n) = real( (2 + quadgen( 12)) ^ (2*n - 1)) / 2}; /* Michael Somos, Feb 15 2011 */
    

Formula

a(n) = ((2 + sqrt(3))^(2*n - 1) + (2 - sqrt(3))^(2*n - 1)) / 4. - Michael Somos, Feb 15 2011
G.f.: x * (1 - x) / (1 -14*x + x^2). - Michael Somos, Feb 15 2011
Let q(n, x) = Sum_{i=0, n} x^(n-i)*binomial(2*n-i, i) then a(n) = q(n, 12). - Benoit Cloitre, Dec 10 2002
a(n) = S(n, 14) - S(n-1, 14) = T(2*n+1, 2)/2 with S(n, x) := U(n, x/2), resp. T(n, x), Chebyshev's polynomials of the second, resp. first, kind. See A049310 and A053120. S(-1, x)=0, S(n, 14)=A007655(n+1) and T(n, 2)=A001075(n). - Wolfdieter Lang, Nov 29 2002
a(n) = A001075(n)*A001075(n+1) - 1 and thus (a(n)+1)^6 has divisors A001075(n)^6 and A001075(n+1)^6 congruent to -1 modulo a(n) (cf. A350916). - Max Alekseyev, Jan 23 2022
4*a(n)^2 - 3*b(n)^2 = 1 with b(n)=A028230(n+1), n>=0.
a(n)*a(n+3) = 168 + a(n+1)*a(n+2). - Ralf Stephan, May 29 2004
a(n) = 14*a(n-1) - a(n-2), a(0) = a(1) = 1. a(1 - n) = a(n) (compare A122571).
a(n) = 12*A076139(n) + 1 = 4*A076140(n) + 1. - Alexander Adamchuk, Apr 06 2007
a(n) = (1/12)*((7-4*sqrt(3))^n*(3-2*sqrt(3))+(3+2*sqrt(3))*(7+4*sqrt(3))^n -6). - Zak Seidov, May 06 2007
a(n) = A102871(n)^2+(A102871(n)-1)^2; sum of consecutive squares. E.g. a(4)=36^2+35^2. - Mason Withers (mwithers(AT)semprautilities.com), Jan 26 2008
a(n) = sqrt((3*A028230(n+1)^2 + 1)/4).
a(n) = A098301(n+1) - A001353(n)*A001835(n).
a(n) = A000217(A001571(n-1)) + A000217(A133161(n)), n>=1. - Ivan N. Ianakiev, Sep 24 2013
a(n)^2 = A001922(n-1)^3 - A001921(n-1)^3, for n >= 1. - Bernard Schott, Nov 20 2022
a(n) = 2^(2*n-3)*Product_{k=1..2*n-1} (2 - sin(2*Pi*k/(2*n-1))). Michael Somos, Dec 18 2022
a(n) = A003154(A101265(n)). - Andrea Pinos, Dec 19 2022

A109437 a(-1) = a(0) = 0, a(1) = 1; a(n) = 5a(n-1) - 5a(n-2) + a(n-3) + 2*(-1)^(n+1), alternatively a(n) = 3a(n-1) + 3a(n-2) - a(n-3).

Original entry on oeis.org

0, 1, 3, 12, 44, 165, 615, 2296, 8568, 31977, 119339, 445380, 1662180, 6203341, 23151183, 86401392, 322454384, 1203416145, 4491210195, 16761424636, 62554488348, 233456528757, 871271626679, 3251629977960, 12135248285160, 45289363162681, 169022204365563, 630799454299572
Offset: 0

Views

Author

Creighton Dement, Jun 28 2005

Keywords

Comments

See A105968 for a similar sequence. Observe the four periodic sequences (1,1,1,1,); (-1,-1,-1,-1); (1,-1,1,-1,); (-1,1,-1,1,); (a(n)) is the (Type 1A) jbasejfor-transform of the periodic sequence (1,1,1,1) with respect to the floretion given in the program code. A109438 is the (Type 1A) jbasejfor-transform of the periodic sequence (-1,-1,-1,-1) with respect to the floretion given in the program code. A001834 is the (Type 1A) jbasejfor-transform of the periodic sequence (1,-1,1,-1) with respect to the floretion given in the program code. A102871 is the (Type 1A) jbasejfor-transform of the periodic sequence (-1,1,-1,1) with respect to the floretion given in the program code.
Floretion Algebra Multiplication Program, FAMP Code: (-1)^(n+1)jbasejfor[ + .5'ii' + .5'kk' + .5'ij' + .5'ji' + .5'jk' + .5'kj'] 1vesfor = (1,1,1,1,)

Crossrefs

Programs

  • Maple
    with(numtheory):a := cfrac (tan(Pi/3),60): > b := cfrac (tan(Pi/6),60): > seq(nthnumer (b,i)*nthdenom (a,i), i=0..24 ); # Zerinvary Lajos, Feb 08 2007
  • Mathematica
    LinearRecurrence[{3,3,-1},{0,1,3},40] (* Harvey P. Dale, Apr 21 2018 *)
  • PARI
    {a(n) = local(s=1); if( n<0, n = -1 - n; s=-1); s * polcoeff( x / ((x + 1) * (x^2 -4*x + 1)) + x * O(x^n), n)} /* Michael Somos, Jul 27 2012 */

Formula

G.f.: x/((x+1)*(x^2-4*x+1)).
a(n) = A002530(n)*A002530(n+1). - Zerinvary Lajos, Feb 08 2007
a(-1 - n) = -a(n). a(2*n) = A011916(n). a(2*n + 1) = -A011916(-1 -n). - Michael Somos, Jul 27 2012
6*a(n) = A001353(n)+A001353(n+1)-(-1)^n. - R. J. Mathar, Sep 07 2016
a(n) = ((1 + sqrt(3))*(2 + sqrt(3))^n + (1 - sqrt(3))*(2 - sqrt(3))^n - 2*(-1)^n)/12. - Stefano Spezia, Sep 19 2023
a(n)+a(n+1) = A001353(n+1). - R. J. Mathar, Aug 31 2025

A109438 a(n) = 5a(n-1) - 5a(n-2) + a(n-3) + 2*(-1)^(n+1), alternatively a(n) = 3a(n-1) + 3a(n-2) - a(n-3).

Original entry on oeis.org

1, 5, 18, 68, 253, 945, 3526, 13160, 49113, 183293, 684058, 2552940, 9527701, 35557865, 132703758, 495257168, 1848324913, 6898042485, 25743845026, 96077337620, 358565505453, 1338184684193, 4994173231318, 18638508241080
Offset: 0

Views

Author

Creighton Dement, Jun 28 2005

Keywords

Comments

See A109437 for comments.
Floretion Algebra Multiplication Program, FAMP Code: (-1)^(n)jbasejfor[ + .5'ii' + .5'kk' + .5'ij' + .5'ji' + .5'jk' + .5'kj'] 1vesfor = (-1,-1,-1,-1,)

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{3,3,-1},{1,5,18},30] (* Harvey P. Dale, Sep 07 2021 *)
  • PARI
    Vec((1 + 2*x) / ((1 + x)*(1 - 4*x + x^2)) + O(x^30)) \\ Colin Barker, May 12 2019

Formula

G.f.: (1+2*x) / ((x+1)*(x^2-4*x+1)).
a(n) = (-2*(-1)^n + (7-5*sqrt(3))*(2-sqrt(3))^n + (2+sqrt(3))^n*(7+5*sqrt(3))) / 12. - Colin Barker, May 12 2019

A133161 Indices of the triangular numbers which are also centered triangular number.

Original entry on oeis.org

1, 4, 16, 61, 229, 856, 3196, 11929, 44521, 166156, 620104, 2314261, 8636941, 32233504, 120297076, 448954801, 1675522129, 6253133716, 23337012736, 87094917229, 325042656181, 1213075707496, 4527260173804, 16895964987721
Offset: 1

Views

Author

Richard Choulet, Oct 09 2007

Keywords

Comments

Also, indices of the triangular numbers which are sums of three consecutive triangular numbers (see A129803).

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{5,-5,1},{1,4,16},30] (* Harvey P. Dale, Aug 29 2017 *)

Formula

a(n+2)=4*a(n+1)-a(n)+1.
a(n+1)=2*a(n)+0.5+0.5*(12*a(n)^2+12*a(n)-15)^0.5.
G.f.: x*(1-x+x^2)/(1-x)/(1-4*x+x^2). - R. J. Mathar, Oct 24 2007
a(n)-a(n-1)= A005320(n-1). - R. J. Mathar, Mar 14 2016

A107401 a(n) = -a(n-1)+4*a(n-2)+4*a(n-3)-a(n-4)-a(n-5).

Original entry on oeis.org

0, 1, 1, 2, 3, 8, 10, 31, 36, 117, 133, 438, 495, 1636, 1846, 6107, 6888, 22793, 25705, 85066, 95931, 317472, 358018, 1184823, 1336140, 4421821, 4986541, 16502462, 18610023, 61588028, 69453550, 229849651, 259204176, 857810577, 967363153
Offset: 0

Views

Author

Roger L. Bagula, May 25 2005

Keywords

Programs

  • Mathematica
    n = 4 M = {{0, 1, 0, 0, 0}, {0, 0, 1, 0, 0}, {0, 0, 0, 1, 0}, {0, 0, 0, 0, 1}, {-1, -1, m, m, -1}} Expand[Det[M - x*IdentityMatrix[5]]] NSolve[Det[M - x*IdentityMatrix[5]] == 0, x] v[1] = {0, 1, 1, 2, 3} digits = 50 v[n_] := v[n] = M.v[n - 1] a = Table[v[n][[1]], {n, 1, digits}]
    LinearRecurrence[{-1,4,4,-1,-1},{0,1,1,2,3},40] (* Harvey P. Dale, Aug 16 2011 *)

Formula

G.f.:-x*(3*x^3+x^2-2*x-1)/((x+1)*(x^4-4*x^2+1)). [From Maksym Voznyy (voznyy(AT)mail.ru), Aug 12 2009]
a(2n) = A102871(n+1).

Extensions

Definition replaced by recurrence by the Associate Editors of the OEIS, Sep 28 2009
Showing 1-5 of 5 results.