A103220 a(n) = n*(n+1)*(3*n^2+n-1)/6.
0, 1, 13, 58, 170, 395, 791, 1428, 2388, 3765, 5665, 8206, 11518, 15743, 21035, 27560, 35496, 45033, 56373, 69730, 85330, 103411, 124223, 148028, 175100, 205725, 240201, 278838, 321958, 369895, 422995, 481616, 546128, 616913, 694365, 778890
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Programs
-
Maple
for(n=0,100,print1((3*n^4+4*n^3-n)/6,","))
-
Mathematica
CoefficientList[Series[- x (1 + 8 x + 3 x^2) / (x - 1)^5, {x, 0, 40}], x] (* Vincenzo Librandi, May 12 2013 *) LinearRecurrence[{5,-10,10,-5,1},{0,1,13,58,170},40] (* Harvey P. Dale, Jan 23 2016 *)
-
PARI
a(n)=n*(n+1)*(3*n^2+n-1)/6 \\ Charles R Greathouse IV, Oct 07 2015
Formula
G.f.: x*(1+8*x+3*x^2)/(1-x)^5.
a(n) = Sum_{i=1..n} Sum_{j=1..n} max(i,j)^2. - Enrique Pérez Herrero, Jan 15 2013
a(n) = a(n-1) + (2*n-1)*n^2 with a(0)=0, see A015237. - J. M. Bergot, Jun 10 2017
From Wesley Ivan Hurt, Nov 20 2021: (Start)
a(n) = Sum_{k=1..n} k * C(2*k,2).
a(n) = 5*a(n-1)-10*a(n-2)+10*a(n-3)-5*a(n-4)+a(n-5). (End)
From Peter Bala, Sep 03 2023: (Start)
a(n) = Sum_{1 <= i <= j <= n} (2*i - 1)*(2*j - 1).
Second subdiagonal of A039755. (End)
Comments