A103285
Main diagonal of triangle A103284, in which row n+1 is formed by sorting, in ascending order, the result of the convolution of row n with {1,1}.
Original entry on oeis.org
1, 1, 2, 3, 5, 9, 16, 29, 53, 97, 179, 333, 623, 1172, 2215, 4201, 7992, 15241, 29122, 55745, 106879, 205223, 394637, 759973, 1465589, 2830273, 5473068, 10597365, 20544860, 39876331, 77481582, 150700968, 293380151, 571619362, 1114581628
Offset: 0
-
a103285 = last . a103284_row -- Reinhard Zumkeller, Nov 19 2015
-
{a(n)=local(A=vector(n+1,i,vector(i)),B);A[1][1]=1; for(k=1,n,B=vector(k+1);B[1]=1;B[k+1]=A[k][k]; for(i=2,k,B[i]=A[k][i]+A[k][i-1]); A[k+1]=vecsort(B));return(A[n+1][n+1])}
Original entry on oeis.org
1, 1, 3, 9, 30, 102, 352, 1240, 4443, 16112, 58900, 216727, 801880, 2982327, 11147622, 41854916, 157805863, 597307573, 2268487476, 8639848112, 32999949539, 126498330700, 485441076004, 1865211479514, 7176111235446, 27644828367182, 106633724636570
Offset: 0
A257646
Index of first row of triangle A103284 containing n.
Original entry on oeis.org
0, 2, 3, 4, 4, 5, 5, 9, 5, 11, 6, 13, 6, 7, 16, 6, 18, 7, 20, 7, 22, 23, 24, 7, 26, 27, 9, 29, 7, 8, 32, 33, 34, 8, 10, 37, 38, 8, 40, 41, 42, 43, 44, 8, 46, 47, 48, 49, 9, 51, 52, 53, 8, 12, 56, 57, 58, 59, 9, 61, 62, 63, 64, 9, 13, 67, 68, 69, 70, 71, 72
Offset: 1
A107430
Triangle read by rows: row n is row n of Pascal's triangle (A007318) sorted into increasing order.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 4, 6, 1, 1, 5, 5, 10, 10, 1, 1, 6, 6, 15, 15, 20, 1, 1, 7, 7, 21, 21, 35, 35, 1, 1, 8, 8, 28, 28, 56, 56, 70, 1, 1, 9, 9, 36, 36, 84, 84, 126, 126, 1, 1, 10, 10, 45, 45, 120, 120, 210, 210, 252, 1, 1, 11, 11, 55, 55, 165, 165, 330, 330, 462, 462, 1
Offset: 0
Triangle begins:
1;
1,1;
1,1,2;
1,1,3,3;
1,1,4,4,6;
A061554 is similar but with rows sorted into decreasing order.
-
import Data.List (sort)
a107430 n k = a107430_tabl !! n !! k
a107430_row n = a107430_tabl !! n
a107430_tabl = map sort a007318_tabl
-- Reinhard Zumkeller, May 26 2013
-
/* As triangle */ [[Binomial(n,Floor(k/2)) : k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Sep 22 2015
-
for n from 0 to 10 do sort([seq(binomial(n,k),k=0..n)]) od; # yields sequence in triangular form. - Emeric Deutsch, May 28 2005
-
Flatten[ Table[ Sort[ Table[ Binomial[n, k], {k, 0, n}]], {n, 0, 12}]] (* Robert G. Wilson v, May 28 2005 *)
-
for(n=0,20, for(k=0,n, print1(binomial(n,floor(k/2)), ", "))) \\ G. C. Greubel, May 22 2017
A115323
Triangle, read by rows, where row n+1 is formed by sorting, in ascending order, the result of the convolution of row n (consisting of 2n+1 terms) with [1,1,1].
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 2, 2, 3, 1, 2, 3, 4, 5, 5, 7, 1, 3, 6, 7, 9, 12, 12, 14, 17, 1, 4, 10, 16, 17, 22, 28, 31, 33, 38, 43, 1, 5, 15, 30, 43, 43, 55, 67, 81, 81, 92, 102, 114, 1, 6, 21, 50, 88, 114, 116, 141, 165, 203, 216, 229, 254, 275, 308, 1, 7, 28, 77, 159, 252, 308, 318, 371, 422
Offset: 0
Convolution of [1,1,1] with row 3 gives:
[1,1,1]*[1,2,3,4,5,5,7] = [1,3,6,9,12,14,17,12,7];
when sorted yields row 4: [1,3,6,7,9,12,12,14,17].
Triangle begins:
1;
1,1,1;
1,1,2,2,3;
1,2,3,4,5,5,7;
1,3,6,7,9,12,12,14,17;
1,4,10,16,17,22,28,31,33,38,43;
1,5,15,30,43,43,55,67,81,81,92,102,114;
1,6,21,50,88,114,116,141,165,203,216,229,254,275,308;
1,7,28,77,159,252,308,318,371,422,509,583,584,648,699,758,837; ...
-
T(n,k)=local(V);if(2*n=0,T(n-1,i-2))+if(i>0,T(n-1,i-1))+T(n-1,i)); V=vecsort(V);V[k+1]))
A103286
Triangle, read by rows, where row n+1 is formed by sorting, in ascending order, the result of the convolution of row n with {2,1}.
Original entry on oeis.org
1, 1, 2, 2, 2, 5, 4, 5, 6, 12, 8, 12, 14, 17, 30, 16, 30, 32, 40, 48, 77, 32, 76, 77, 94, 112, 136, 202, 64, 184, 202, 230, 265, 318, 384, 540, 128, 432, 540, 588, 662, 760, 901, 1086, 1464, 256, 992, 1464, 1512, 1716, 1912, 2182, 2562, 3073, 4014, 512, 2240
Offset: 0
Convolution of row 4 {4,5,6,12} with {2,1} = {8,14,17,30,12};
sort to obtain row 5: {8,12,14,17,30}.
Rows begin:
1,
1,2,
2,2,5,
4,5,6,12,
8,12,14,17,30,
16,30,32,40,48,77,
32,76,77,94,112,136,202,
64,184,202,230,265,318,384,540,
128,432,540,588,662,760,901,1086,1464,
256,992,1464,1512,1716,1912,2182,2562,3073,4014,...
-
{T(n,k)=local(A=vector(n+1,i,vector(i)),B);A[1][1]=1; for(k=1,n,B=vector(k+1);B[1]=2*A[k][1];B[k+1]=A[k][k]; for(i=2,k,B[i]=2*A[k][i]+A[k][i-1]); A[k+1]=vecsort(B));return(A[n+1][k+1])}
A116908
Triangle, read by rows, where row n+1 is formed by sorting, in ascending order, the result of the convolution of row n with {1,2}.
Original entry on oeis.org
1, 1, 2, 1, 2, 3, 1, 3, 3, 5, 1, 4, 5, 6, 8, 1, 5, 8, 9, 11, 14, 1, 6, 13, 14, 17, 20, 24, 1, 7, 19, 24, 37, 31, 37, 44, 1, 8, 26, 43, 44, 51, 58, 68, 81, 1, 9, 34, 69, 81, 87, 95, 109, 126, 149, 1, 10, 43, 103, 149, 150, 168, 182, 204, 235, 274
Offset: 1
Convolution of row 5 {1,4,5,6,8} with {1,2} = {1,5,9,11,14,8}; sort to obtain row 6: {1,5,8,9,11,14}.
Rows begin:
1,
1,2,
1,2,3,
1,3,3,5,
1,4,5,6,8,
1,5,8,9,11,14,
1,6,13,14,17,20,24,
1,7,19,24,37,31,37,44,
1,8,26,43,44,51,58,68,81,
1,9,34,69,81,87,95,109,126,149,
1,10,43,103,149,150,168,182,204,235,274,...
Showing 1-7 of 7 results.
Comments