cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A103327 Triangle read by rows: T(n,k) = binomial(2n+1, 2k+1).

Original entry on oeis.org

1, 3, 1, 5, 10, 1, 7, 35, 21, 1, 9, 84, 126, 36, 1, 11, 165, 462, 330, 55, 1, 13, 286, 1287, 1716, 715, 78, 1, 15, 455, 3003, 6435, 5005, 1365, 105, 1, 17, 680, 6188, 19448, 24310, 12376, 2380, 136, 1, 19, 969, 11628, 50388, 92378, 75582, 27132, 3876, 171, 1
Offset: 0

Views

Author

Ralf Stephan, Feb 06 2005

Keywords

Comments

A subset of Pascal's triangle A007318.
Elements have the same parity as those of Pascal's triangle.
Matrix inverse is A104033. - Paul D. Hanna, Feb 28 2005
Row reverse of A091042. - Peter Bala, Jul 29 2013
Let E(y) = cosh(sqrt(y)) = 1 + 3*y/3! + 5*y^2/5! + 7*y^3/7! + .... Then this triangle is the generalized Riordan array (E(y), y) with respect to the sequence (2*n+1)! as defined in Wang and Wang. Cf. A086645. - Peter Bala, Aug 06 2013
The row polynomial P(d, x) = Sum_{k=0..d} T(d, k)*x^k, multiplied by (2*d)!/d! = A001813(d), gives the numerator polynomial of the o.g.f. of the sequence of the diagonal d, for d >= 0, of the Sheffer triangle Lah[4,3] given in A292219. - Wolfdieter Lang, Oct 12 2017

Examples

			The triangle T(n, k) begins:
n\k   0    1     2      3      4      5      6     7    8   9  10 ...
0:    1
1:    3    1
2:    5   10     1
3:    7   35    21      1
4:    9   84   126     36      1
5:   11  165   462    330     55      1
6:   13  286  1287   1716    715     78      1
7:   15  455  3003   6435   5005   1365    105     1
8:   17  680  6188  19448  24310  12376   2380   136    1
9:   19  969 11628  50388  92378  75582  27132  3876  171   1
10:  21 1330 20349 116280 293930 352716 203490 54264 5985 210   1
... reformatted and extended. - _Wolfdieter Lang_, Oct 12 2017
From _Peter Bala_, Aug 06 2013: (Start)
Viewed as the generalized Riordan array (cosh(sqrt(y)), y) with respect to the sequence (2*n+1)! the column generating functions begin
1st col: cosh(sqrt(y)) = 1 + 3*y/3! + 5*y^2/5! + 7*y^3/7! + 9*y^4/9! + ....
2nd col: 1/3!*y*cosh(sqrt(y)) = y/3! + 10*y^2/5! + 35*y^3/7! + 84*y^4/9! + ....
3rd col: 1/5!*y^2*cosh(sqrt(y)) = y^2/5! + 21*y^3/7!! + 126*y^4/9! + 462*y^5/11! + .... (End)
		

References

  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 224.

Crossrefs

Reflected version of A091042. Cf. A086645, A103328.

Programs

  • GAP
    Flat(List([0..12], n-> List([0..n], k-> Binomial(2*n+1, 2*k+1) ))); # G. C. Greubel, Aug 01 2019
  • Magma
    [Binomial(2*n+1, 2*k+1): k in [0..n], n in [0..12]]; // G. C. Greubel, Aug 01 2019
    
  • Mathematica
    Flatten[Table[Binomial[2n+1,2k+1],{n,0,10},{k,0,n}]] (* Harvey P. Dale, Jun 19 2014 *)
  • Maxima
    create_list(binomial(2*n+1,2*k+1),n,0,12,k,0,n); /* Emanuele Munarini, Mar 11 2011 */
    
  • PARI
    {T(n,k)=local(X=x+x*O(x^n),Y=y+y*O(y^k)); polcoeff(polcoeff((1+X*(1-Y))/((1+X*(1-Y))^2-4*X),n,x),k,y)} \\ Paul D. Hanna, Feb 28 2005
    
  • PARI
    T(n,k) = binomial(2*n+1, 2*k+1);
    for(n=0, 12, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Aug 01 2019
    
  • Sage
    [[binomial(2*n+1, 2*k+1) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Aug 01 2019
    

Formula

G.f. for column k: Sum_{j=0..k+1} C(2*(k+1), 2*j)*x^j/(1-x)^(2*(k+1)). - Paul Barry, Feb 24 2005
G.f.: A(x, y) = (1 + x*(1-y))/( (1 + x*(1-y))^2 - 4*x ). - Paul D. Hanna, Feb 28 2005
Sum_{k=0..n} T(n, k)*A000364(n-k) = A002084(n). - Philippe Deléham, Aug 27 2005
E.g.f.: 1/sqrt(x)*sinh(sqrt(x)*t)*cosh(t) = t + (3 + x)*t^3/3! + (5 + 10*x + x^2)*t^5/5! + .... - Peter Bala, Jul 29 2013
T(n+2,k+2) = 2*T(n+1,k+2) + 2*T(n+1,k+1) - T(n,k+2) + 2*T(n,k+1) - T(n,k). - Emanuele Munarini, Jul 05 2017