cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A350383 a(n) = [x^n] 1/(1 + x + x^2)^n.

Original entry on oeis.org

1, -1, 1, 2, -15, 49, -98, 48, 561, -2860, 8151, -12948, -9282, 149226, -594320, 1428952, -1448655, -5538975, 37450900, -122995950, 239589735, -37528755, -1886983020, 8939152560, -24579514050, 35197176924, 51580335366, -541312482256, 2033695030128, -4624358661240
Offset: 0

Views

Author

Seiichi Manyama, Dec 29 2021

Keywords

Crossrefs

Programs

  • Maple
    a := n -> (-1)^n*hypergeom([-n/3, 1/3 - n/3, 2/3 - n/3, n], [1/3, 2/3, 1], 1): seq(simplify(a(n)), n = 0..30); # Peter Bala, Apr 17 2023
  • Mathematica
    a[n_] := Coefficient[Series[1/(1 + x + x^2)^n, {x, 0, n}], x, n]; Array[a, 30, 0] (* Amiram Eldar, Dec 29 2021 *)
  • PARI
    a(n) = sum(k=0, n, (-1)^(n-k)*binomial(n-1+k, k)*binomial(n, 3*k));

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n-1+k,k) * binomial(n,3*k).
Recurrence: 3*(n-1)*n*(4*n - 7)*a(n) = -2*(n-1)*(28*n^2 - 63*n + 27)*a(n-1) - 3*(3*n - 5)*(3*n - 4)*(4*n - 3)*a(n-2). - Vaclav Kotesovec, Mar 18 2023
From Peter Bala, Apr 15 2023: (Start)
a(n) = (-1)^n*hypergeom([-n/3, 1/3 - n/3, 2/3 - n/3, n], [1/3, 2/3, 1], 1).
Conjecture: the supercongruence a(n*p^r) == a(n*p^(r-1)) (mod p^(2*r)) holds for positive integers n and r and all primes p >= 5. Cf. A228960.
More generally, let k be a positive integer, m an integer and let f(x) = g(x)/h(x), where g(x) and h(x) are both finite products of cyclotomic polynomials. Then we conjecture that the same supercongruences hold, except for a finite number of primes p depending on f(x), for the sequence {a_(k,m,f)(n): n >= 0} defined by a_(k,m,f)(n) = [x^(k*n)] f(x)^(m*n). (End)
From Peter Bala, Mar 11 2025: (Start)
G.f.: A(x) = 1 + x*d/dx(log(G(x)/x)), where G(x) = x - x^2 + x^3 - 4*x^5 + 14*x^6 - 30*x^7 + ... is the g.f. of A103779.
The following formulas hold for n >= 1:
a(n) = [x^n] T(2*n, (1 - x)/2), where T(n, x) denotes the n-th Chebyshev polynomial of the first kind.
a(n) = Sum_{k = 0..n} (-1)^(n+k) * n/(2*n-k) * binomial(2*n-k, k)*binomial(2*n-2*k, n).
a(n) = (1/2)*(-1)^n*binomial(2*n, n)*hypergeom([-n/2, (-n+1)/2], [-2*n+1], 4). Cf. A213684. (End)

A212260 G.f. A(x) satisfies A(x)+A(x)^2+A(x)^3 = (1-sqrt(1-4*x))/2.

Original entry on oeis.org

0, 1, 0, 1, 3, 5, 22, 64, 198, 710, 2332, 8105, 28665, 100653, 361104, 1301180, 4713267, 17217021, 63140534, 232702261, 861507251, 3200666821, 11933894310, 44636509320, 167427781950, 629691033738, 2373987233286, 8970240131032, 33965443165016, 128857452216256
Offset: 0

Views

Author

Vladimir Kruchinin, May 12 2012

Keywords

Crossrefs

Cf. A103779.

Programs

  • Maple
    a:= n-> coeff(series(RootOf(A+A^2+A^3=(1-sqrt(1-4*x))/2, A), x, n+1), x, n): seq(a(n), n=0..40); # Alois P. Heinz, May 12 2012
    # second Maple program:
    a:= proc(n) option remember; `if`(n<5, [0, 1, 0, 1, 3][n+1],
         (2*(n-1)*(n-2)*(n-3)*(21574*n^2-148237*n+252420)*a(n-1)
         +(n-2)*(n-3)*(30485*n^3-173514*n^2+191353*n+116820)*a(n-2)
         -4*(n-3)*(12730*n^4-266121*n^3+1766621*n^2-4771248*n+4563630)*a(n-3)
         -36*(6*n-23)*(67*n-183)*(6*n-25)*(3*n-10)*(3*n-11)*a(n-4))/
         (132*(67*n-250)*(n-1)*(n-2)*(n-3)*n))
        end:
    seq(a(n), n=0..40);  # Alois P. Heinz, Sep 27 2013
  • Mathematica
    nn=29;f[x_]:=Sum[a[n]x^n,{n,0,nn}];sol=SolveAlways[0==Series[f[x]+f[x]^2 +f[x]^3-(1-(1-4x)^(1/2))/2,{x,0,nn}],x][[3]];Table[a[n],{n,0,nn}]/.sol (* Geoffrey Critzer, Sep 27 2013 *)
  • Maxima
    a(n):=(sum(binomial(2*n-k-1,n-1)*(sum((-1)^i*binomial(i,k-i-1) *binomial(k+i-1,k-1), i,1,k-1)), k,2,n) +binomial(2*n-2,n-1))/n;

Formula

a(n) = (sum(k=2..n, C(2*n-k-1,n-1)*(sum(i=1..k-1, (-1)^i*C(i,k-i-1) * C(k+i-1,k-1)))) +C(2*n-2,n-1))/n if n>0, a(0) = 0.
a(n) ~ c * 4^n / (sqrt(Pi) * n^(3/2)), where c = 0.12273243737616788383659461976... is the real root of the equation 8*c*(134*c^2 - 1) = 1. - Vaclav Kotesovec, Nov 20 2017

A217361 Series reversion of x+x^2+2*x^3.

Original entry on oeis.org

1, -1, 0, 5, -16, 14, 96, -495, 880, 2002, -17888, 48178, 19040, -665380, 2501312, -1983543, -23639952, 124654250, -216770400, -722621130, 5941209120, -15657865020, -12958545600, 267306817050, -972419359392, 534946077108, 11045425672512
Offset: 1

Views

Author

R. J. Mathar, Oct 01 2012

Keywords

Examples

			If y=x+x^2+2*x^3, then x= y -y^2 +5*y^4 -16*y^5 +14*y^6 +96*y^7 -...
		

Crossrefs

Cf. A103779 (x+x^2+x^3), A006013 (x-2*x^2+x^3).

Programs

  • Mathematica
    Rest[CoefficientList[InverseSeries[Series[x+x^2+2*x^3,{x,0,20}],x],x]] (* Vaclav Kotesovec, Sep 10 2013 *)

Formula

D-finite with recurrence 7*n*(n-1)*a(n) +16*(n-1)*(2*n-3)*a(n-1) +12*(3*n-5)*(3*n-7)*a(n-2)=0.
Lim sup n->infinity |a(n)|^(1/n) = 6*sqrt(3/7) = 3.927922... - Vaclav Kotesovec, Sep 10 2013

A217365 Series reversion of x + x^2 + x^3 + x^4 + x^5.

Original entry on oeis.org

1, -1, 1, -1, 1, 0, -6, 27, -83, 209, -455, 845, -1169, 272, 5916, -29070, 98040, -274075, 660859, -1351756, 2110020, -1186110, -8227260, 47128770, -170898624, 505121130, -1281947030, 2772309230, -4708067030, 3936320480, 13030540120, -90168747031, 348836671587, -1077316101393
Offset: 1

Views

Author

R. J. Mathar, Oct 01 2012

Keywords

Comments

Appears to obey an 8-term hypergeometric recurrence with 4th-order polynomial coefficients.

Examples

			If y=x+x^2+x^3+x^4+x^5, then x=y -y^2 +y^3 -y^4 +y^5 -6*y^7 +27*y^8 -83*y^9 +...
		

Crossrefs

Cf. A063019 (x-x^2+x^3-x^4), A103779 (x+x^2+x^3).

Programs

  • Maple
    rec := 5*n*(5*n-1)*(5*n+1)*(5*n+2)*(5*n+3)*a(n)-(n+1)*(27906*n^4+198109*n^3+447051*n^2+405674*n+128400)*a(n+1)+(25*(n+2))*(1875*n^4+28312*n^3+141513*n^2+287228*n+204072)*a(n+2)+(250*(n+2))*(n+3)*(250*n^3+3031*n^2+11433*n+13668)*a(n+3)+(625*(n+2))*(n+3)*(n+4)*(75*n^2+662*n+1403)*a(n+4)+(3125*(n+2))*(n+3)*(n+4)*(n+5)*(6*n+29)*a(n+5)+(3125*(n+2))*(n+3)*(n+4)*(n+5)*(n+6)*a(n+6):
    f:= gfun:-rectoproc({rec,a(1) = 1, a(2) = -1, a(3) = 1, a(4) = -1, a(5) = 1, a(6) = 0},a(n),remember):
    map(f, [$1..50]); # Robert Israel, Jul 10 2015
  • Mathematica
    InverseSeries[x + x^2 + x^3 + x^4 + x^5 + O[x]^50][[3]] (* Vladimir Reshetnikov, Jul 09 2015 *)
    RecurrenceTable[{5 (-8+3 n) (-21+5 n) (-19+5 n) (-18+5 n) (-17+5 n) (-17+6 n) (-11+6 n) a[-4+n]+4 (-3+n) (-11+6 n) (-4792620+7647427 n-4855116 n^2+1533029 n^3-240768 n^4+15048 n^5) a[-3+n]+30 (-3+n) (-2+n) (-1267420+2386123 n-1760222 n^2+636639 n^3-113004 n^4+7884 n^5) a[-2+n]+100 (-3+n) (-2+n) (-1+n) (-23+6 n) (-2310+2921 n-1152 n^2+144 n^3) a[-1+n]+125 (-3+n) (-2+n) (-1+n) n (-11+3 n) (-23+6 n) (-17+6 n) a[n]==0, a[1]==1, a[2]==-1, a[3]==1, a[4]==-1}, a, {n, 1, 40}] (* Vaclav Kotesovec, Aug 18 2015 *)
  • PARI
    Vec(serreverse(x + x^2 + x^3 + x^4 + x^5 + O(x^50))) \\ Michel Marcus, Aug 03 2015

Formula

D-finite with recurrence: 5 n (5 n - 1) (5 n + 1) (5 n + 2) (5 n + 3) a(n) - (n + 1) (27906 n^4 + 198109 n^3 + 447051 n^2 + 405674 n + 128400) a(n + 1) + 25 (n + 2) (1875 n^4 + 28312 n^3 + 141513 n^2 + 287228 n + 204072) a(n + 2) + 250 (n + 2) (n + 3) (250 n^3 + 3031 n^2 + 11433 n + 13668) a(n + 3) + 625 (n + 2) (n + 3) (n + 4) (75 n^2 + 662 n + 1403) a(n + 4) + 3125 (n + 2) (n + 3) (n + 4) (n + 5) (6 n + 29) a(n + 5) + 3125(n + 2) (n + 3) (n + 4) (n + 5) (n + 6) a(n + 6) = 0. - Vladimir Reshetnikov, Jul 09 2015
From Robert Israel, Jul 10 2015: (Start)
G.f. G(x) satisfies G + G^2 + G^3 + G^4 + G^5 = x
and the differential equation
-2184*x^3+32760*x^2-163800*x+273000+(-10920*x^3+163800*x^2-819000*x+1365000)*G(x)+(2457000*x^4-24555336*x^3+33314040*x^2-22930200*x-10608000)*G'(x)+(11602500*x^5-88671024*x^4+64015500*x^3-18674400*x^2-27414000*x-9780000)*G''(x)+(7962500*x^6-48147528*x^5+12768480*x^4-2457200*x^3-7171500*x^2-6885000*x-1975000)*G'''(x)+(1137500*x^7-5485909*x^6-750720*x^5-1121525*x^4-654500*x^3-744375*x^2-475000*x-109375)*G''''(x) = 0
from which we can obtain the 8-term recurrence mentioned in the Comments:
1820*(5*n+1)*(5*n+2)*(5*n+3)*(5*n-1)*a(n)-13*(421993*n^4+2859670*n^3+6398855*n^2+5850050*n+1876272)*a(n+1)-60*(12512*n^4-187784*n^3-1717861*n^2-4206649*n-3230668)*a(n+2)-25*(44861*n^4+367454*n^3+1830175*n^2+6002422*n+7768608)*a(n+3)-500*(n+4)*(1309*n^3+22197*n^2+140942*n+279612)*a(n+4)-1875*(n+5)*(n+4)*(397*n^2+5657*n+18614)*a(n+5)-25000*(19*n+136)*(n+6)*(n+5)*(n+4)*a(n+6)-109375*(n+5)*(n+4)*(n+7)*(n+6)*a(n+7) = 0.
From the Lagrange inversion theorem,
a(n) = 1/n! * (d/dx)^(n-1) (p^n)(0) where p(x) = 1/(1+x+x^2+x^3+x^4).
(End)
Recurrence: 125*(n-3)*(n-2)*(n-1)*n*(3*n - 11)*(6*n - 23)*(6*n - 17)*a(n) = -100*(n-3)*(n-2)*(n-1)*(6*n - 23)*(144*n^3 - 1152*n^2 + 2921*n - 2310)*a(n-1) - 30*(n-3)*(n-2)*(7884*n^5 - 113004*n^4 + 636639*n^3 - 1760222*n^2 + 2386123*n - 1267420)*a(n-2) - 4*(n-3)*(6*n - 11)*(15048*n^5 - 240768*n^4 + 1533029*n^3 - 4855116*n^2 + 7647427*n - 4792620)*a(n-3) - 5*(3*n - 8)*(5*n - 21)*(5*n - 19)*(5*n - 18)*(5*n - 17)*(6*n - 17)*(6*n - 11)*a(n-4). - Vaclav Kotesovec, Aug 18 2015

A381840 G.f. A(x) satisfies A(x) = 1 + x*A(x)^4 - x^2*A(x)^7.

Original entry on oeis.org

1, 1, 3, 11, 42, 153, 469, 690, -5967, -82708, -700876, -4989894, -32082336, -190742496, -1053280998, -5347579160, -24162468390, -88249158963, -157067396045, 1334548659436, 20996875910808, 194476989681546, 1491599102987040, 10232074769143770, 64440205192609155
Offset: 0

Views

Author

Seiichi Manyama, Mar 08 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\2, (-1)^k*binomial(3*n+k, k)*binomial(4*n-k, n-2*k))/(3*n+1);

Formula

a(n) = (1/(3*n+1)) * Sum_{k=0..floor(n/2)} (-1)^k * binomial(3*n+k,k) * binomial(4*n-k,n-2*k).
G.f.: ( (1/x) * Series_Reversion( x * (1-x+x^2)^3 ) )^(1/3).
Showing 1-5 of 5 results.