cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A141686 Triangle read by rows: T(n, k) = binomial(n-1, k-1)*A008292(n, k).

Original entry on oeis.org

1, 1, 1, 1, 8, 1, 1, 33, 33, 1, 1, 104, 396, 104, 1, 1, 285, 3020, 3020, 285, 1, 1, 720, 17865, 48320, 17865, 720, 1, 1, 1729, 90153, 546665, 546665, 90153, 1729, 1, 1, 4016, 409024, 4941104, 10933300, 4941104, 409024, 4016, 1, 1, 9117, 1722240, 38236128, 165104604, 165104604, 38236128, 1722240, 9117, 1
Offset: 1

Views

Author

Roger L. Bagula and Gary W. Adamson, Sep 08 2008

Keywords

Examples

			Triangle begins as:
  1;
  1,    1;
  1,    8,       1;
  1,   33,      33,        1;
  1,  104,     396,      104,         1;
  1,  285,    3020,     3020,       285,         1;
  1,  720,   17865,    48320,     17865,       720,        1;
  1, 1729,   90153,   546665,    546665,     90153,     1729,       1;
  1, 4016,  409024,  4941104,  10933300,   4941104,   409024,    4016,    1;
  1, 9117, 1722240, 38236128, 165104604, 165104604, 38236128, 1722240, 9117, 1;
		

Crossrefs

Programs

  • Haskell
    a141686 n k = a141686_tabl !! (n-1) !! (k-1)
    a141686_row n = a141686_tabl !! (n-1)
    a141686_tabl = zipWith (zipWith (*)) a007318_tabl a008292_tabl
    -- Reinhard Zumkeller, Apr 16 2014
    
  • Magma
    A141686:= func< n, k | Binomial(n-1, k-1)*EulerianNumber(n, k-1) >;
    [A141686(n, k): k in [1..n], n in [1..12]]; // G. C. Greubel, Dec 31 2024
    
  • Mathematica
    (* Recurrence for A008292 *)
    f[n_, k_]:= If[k==1||k==n,1, (n-k+1)*f[n-1,k-1] + k*f[n-1,k]];
    Table[f[n, k]*Binomial[n-1,k-1], {n,12}, {k,n}]//Flatten
    (* Second program *)
    Needs["Combinatorica`"];
    A141686[n_, k_]:= Binomial[n-1,k-1]*Eulerian[n,k-1];
    Table[A141686[n,k], {n,12}, {k,n}]//Flatten (* G. C. Greubel, Dec 31 2024 *)
  • Python
    # or SageMath
    from sage.combinat.combinat import eulerian_number
    def A141686(n,k): return binomial(n-1,k-1)*eulerian_number(n,k-1)
    print(flatten([[A141686(n,k) for k in range(1,n+1)] for n in range(1,13)])) # G. C. Greubel, Dec 31 2024

Formula

T(n, k) = T(n, n-k+1).
Sum_{k=1..n} T(n, k) = A104098(n) (row sums).

Extensions

keyword:tabl inserted, indices corrected by the Assoc. Eds. of the OEIS, Jun 30 2010

A011818 Normalized volume of center slice of n-dimensional cube: 2^n* n!*Vol({ (x_1,...,x_n) in [ 0,1 ]^n: n/2 <= Sum_{i = 1..n} x_i <= (n+1)/2 }).

Original entry on oeis.org

1, 3, 16, 115, 1056, 11774, 154624, 2337507, 39984640, 763546234, 16101629952, 371644257582, 9319104528384, 252270887452380, 7332475985461248, 227761317947788323, 7529455986838732800, 263948439074152148450
Offset: 1

Views

Author

Guenter M. Ziegler (ziegler(AT)math.tu-berlin.de)

Keywords

Crossrefs

Programs

  • Maple
    a := n -> add(binomial(n,k)*eulerian1(n,k), k=0..n-1):
    seq(a(n), n=1..18); # Peter Luschny, Jun 30 2016
  • Mathematica
    Eulerian1[n_, k_] = Sum[(-1)^j (k-j+1)^n Binomial[n+1, j], {j, 0, k+1}];
    a[n_] := Sum[Binomial[n, k] Eulerian1[n, k], {k, 0, n-1}];
    Array[a, 18] (* Jean-François Alcover, Jun 03 2019 *)

Formula

V(d) = sum_{k=1}^{d-1} {d choose k-1} A_{d, k} where A_{k, d} denotes the Eulerian number (permutations of a d-set with k-1 descents) - see A008292.
Restated: a(n) = Sum_{k = 1..n} C(n,k-1)*A008292(n,k) for n>=1.
From Peter Bala, Jun 28 2016: (Start)
a(n) = 1/2*Sum_{k = 0..floor((n+1)/2)} (-1)^k*binomial(n + 1,k)*(n + 1 - 2*k)^n.
a(n) ~ sqrt(3)/2*(2/e)^(n+1)*(n+1)^n. (End)
a(2*n-1)/2^(2*n-2) = A025585(n) for n>=1. - Peter Luschny, Jun 30 2016

Extensions

More terms from Paul D. Hanna, Mar 15 2006
Showing 1-2 of 2 results.