A141686 Triangle read by rows: T(n, k) = binomial(n-1, k-1)*A008292(n, k).
1, 1, 1, 1, 8, 1, 1, 33, 33, 1, 1, 104, 396, 104, 1, 1, 285, 3020, 3020, 285, 1, 1, 720, 17865, 48320, 17865, 720, 1, 1, 1729, 90153, 546665, 546665, 90153, 1729, 1, 1, 4016, 409024, 4941104, 10933300, 4941104, 409024, 4016, 1, 1, 9117, 1722240, 38236128, 165104604, 165104604, 38236128, 1722240, 9117, 1
Offset: 1
Examples
Triangle begins as: 1; 1, 1; 1, 8, 1; 1, 33, 33, 1; 1, 104, 396, 104, 1; 1, 285, 3020, 3020, 285, 1; 1, 720, 17865, 48320, 17865, 720, 1; 1, 1729, 90153, 546665, 546665, 90153, 1729, 1; 1, 4016, 409024, 4941104, 10933300, 4941104, 409024, 4016, 1; 1, 9117, 1722240, 38236128, 165104604, 165104604, 38236128, 1722240, 9117, 1;
Links
- Reinhard Zumkeller, Rows n = 1..125 of table, flattened
Programs
-
Haskell
a141686 n k = a141686_tabl !! (n-1) !! (k-1) a141686_row n = a141686_tabl !! (n-1) a141686_tabl = zipWith (zipWith (*)) a007318_tabl a008292_tabl -- Reinhard Zumkeller, Apr 16 2014
-
Magma
A141686:= func< n, k | Binomial(n-1, k-1)*EulerianNumber(n, k-1) >; [A141686(n, k): k in [1..n], n in [1..12]]; // G. C. Greubel, Dec 31 2024
-
Mathematica
(* Recurrence for A008292 *) f[n_, k_]:= If[k==1||k==n,1, (n-k+1)*f[n-1,k-1] + k*f[n-1,k]]; Table[f[n, k]*Binomial[n-1,k-1], {n,12}, {k,n}]//Flatten (* Second program *) Needs["Combinatorica`"]; A141686[n_, k_]:= Binomial[n-1,k-1]*Eulerian[n,k-1]; Table[A141686[n,k], {n,12}, {k,n}]//Flatten (* G. C. Greubel, Dec 31 2024 *)
-
Python
# or SageMath from sage.combinat.combinat import eulerian_number def A141686(n,k): return binomial(n-1,k-1)*eulerian_number(n,k-1) print(flatten([[A141686(n,k) for k in range(1,n+1)] for n in range(1,13)])) # G. C. Greubel, Dec 31 2024
Formula
T(n, k) = T(n, n-k+1).
Sum_{k=1..n} T(n, k) = A104098(n) (row sums).
Extensions
keyword:tabl inserted, indices corrected by the Assoc. Eds. of the OEIS, Jun 30 2010