A030296 Smallest start for a run of at least n composite numbers.
4, 8, 8, 24, 24, 90, 90, 114, 114, 114, 114, 114, 114, 524, 524, 524, 524, 888, 888, 1130, 1130, 1328, 1328, 1328, 1328, 1328, 1328, 1328, 1328, 1328, 1328, 1328, 1328, 9552, 9552, 15684, 15684, 15684, 15684, 15684, 15684, 15684, 15684, 19610, 19610, 19610
Offset: 1
Examples
a(5) = 24 as 24 is the first of the five consecutive composite numbers 24, 25, 26, 27, 28.
References
- Amarnath Murthy, Some more conjectures on primes and divisors, Smarandache Notions Journal, Vol. 12, No. 1-2-3, Spring 2001.
Links
- Donovan Johnson, Table of n, a(n) for n = 1..1475 (terms < 4*10^18)
- Thomas R. Nicely, First occurrence prime gaps [For local copy see A000101]
- Eric Weisstein's World of Mathematics, Prime Gaps
Programs
-
Mathematica
a[n_] := a[n] = For[p1 = a[n-1]-1; p2 = NextPrime[p1], True, p1 = p2; p2 = NextPrime[p1], If[ p2-p1-1 >= n, Return[p1+1]]]; a[1] = 4; Table[a[n], {n, 1, 43}] (* Jean-François Alcover, May 24 2012 *) Module[{nn=20000,cmps},cmps=Table[If[CompositeQ[n],1,0],{n,nn}];Table[ SequencePosition[ cmps,PadRight[{},k,1],1][[1,1]],{k,50}]] (* Harvey P. Dale, Jan 01 2022 *)
Formula
a(n) = A104138(n) + 1. - Jonathan Sondow, May 31 2014
Comments