cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A105163 a(n) = (n^3 - 7*n + 12)/6.

Original entry on oeis.org

1, 1, 3, 8, 17, 31, 51, 78, 113, 157, 211, 276, 353, 443, 547, 666, 801, 953, 1123, 1312, 1521, 1751, 2003, 2278, 2577, 2901, 3251, 3628, 4033, 4467, 4931, 5426, 5953, 6513, 7107, 7736, 8401, 9103, 9843, 10622, 11441, 12301, 13203, 14148, 15137, 16171
Offset: 1

Views

Author

Creighton Dement, Apr 10 2005

Keywords

Comments

A floretion-generated sequence relating to the sequence "A class of Boolean functions of n variables and rank 2" (among several others- see link "Sequences in Context").
a(n) is the number of P-position in 2-modular Nim with n-1 piles. - Tanya Khovanova and Karan Sarkar, Jan 10 2016
a(n) is the number of parking functions of size n-1 avoiding the patterns 123 and 231. - Lara Pudwell, Apr 10 2023
a(n) is the number of length (n-2) strings on the alphabet {0,1,2} with digit sum at most 3. - Daniel T. Martin, May 23 2023

Crossrefs

Programs

  • Maple
    seq(binomial(n+1, n-2)-n+2, n=1..44); # Zerinvary Lajos, Mar 21 2008
  • Mathematica
    Rest@ CoefficientList[Series[x (1 - 3 x + 5 x^2 - 2 x^3)/(1 - x)^4, {x, 0, 46}], x] (* or *)
    Array[(#^3 - 7 # + 12)/6 &, 46] (* Michael De Vlieger, Nov 18 2019 *)
  • Maxima
    A105163(n):=(n^3 - 7*n + 12)/6$ makelist(A105163(n),n,1,20); /* Martin Ettl, Dec 18 2012 */
    
  • PARI
    a(n)=(n^3-7*n)/6+2 \\ Charles R Greathouse IV, Mar 26 2012
    
  • Python
    for n in range(1,45): print((n**3 - 7*n + 12)/6, end=', ') # Stefano Spezia, Jan 05 2019

Formula

a(n) = A005581(n) + 1.
a(n) = C(n+1,n-2) - n + 2. - Zerinvary Lajos, Mar 21 2008
Sequence starting (1, 3, 8, 17, ...) = binomial transform of [1, 2, 3, 1, 0, 0, 0, ...]. - Gary W. Adamson, Apr 24 2008
G.f.: x*(1 - 3*x + 5*x^2 - 2*x^3)/(1 - x)^4. - Colin Barker, Mar 26 2012
a(n) = A181971(n,3) for n > 2. - Reinhard Zumkeller, Jul 09 2012
a(n) = 2*a(n-1) - a(n-2) + n - 1, for all n in Z. - Gionata Neri, Jul 28 2016
a(n) = A000292(n-2) + A000124(n-2). - Torlach Rush, Aug 06 2018