A259558 Numbers n such that prime(n)-1 and prime(n+1)-1 have the same number of distinct prime factors.
2, 4, 5, 8, 9, 12, 15, 16, 18, 19, 23, 24, 25, 28, 29, 31, 36, 38, 39, 40, 42, 44, 52, 56, 58, 59, 60, 63, 64, 71, 73, 74, 76, 80, 85, 88, 91, 92, 94, 96, 98, 99, 102, 103, 106, 107, 109, 110, 111, 112, 113, 117, 126, 129, 130, 131, 132, 133, 134, 136, 139, 141, 142, 143, 144, 151, 152, 159, 160, 161, 165, 168, 169, 173
Offset: 1
Keywords
Examples
The prime factors of prime(5)-1 are 2,5. The prime factors of prime(6)-1 are 2,3,3 and they have the same number of distinct prime factors.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
N:= 2000: # to use primes <= N Primes:= select(isprime,[2,seq(2*i+1,i=1..floor((N-1)/2))]): npf:= map(t -> nops(numtheory:-factorset(Primes[t]-1)), [$1..nops(Primes)]): select(t -> npf[t+1]=npf[t],[$1..nops(Primes)-1]); # Robert Israel, Jun 30 2015
-
Mathematica
Select[Range@ 173, PrimeNu[Prime[#] - 1] == PrimeNu[Prime[# + 1] - 1] &] (* Michael De Vlieger, Jul 01 2015 *)
-
PARI
lista(nn) = {forprime(p=2, nn, if (omega(p-1)==omega(nextprime(p+1)-1), print1(primepi(p), ", ")););} \\ Michel Marcus, Jul 01 2015
Comments