A279977 T(n,k) is the number of n X k 0..1 arrays with no element equal to a strict majority of its horizontal and antidiagonal neighbors, with the exception of exactly two elements, and with new values introduced in order 0 sequentially upwards.
0, 1, 0, 0, 3, 0, 3, 9, 9, 0, 3, 24, 50, 31, 0, 9, 62, 221, 296, 108, 0, 15, 134, 822, 1922, 1650, 366, 0, 31, 277, 2669, 10491, 15511, 8666, 1205, 0, 57, 542, 8068, 50690, 124030, 118857, 43543, 3873, 0, 108, 1035, 23169, 226771, 887491, 1393359, 876704, 211650
Offset: 1
Examples
Table starts: .0.....1.......0.........3...........3............9.............15 .0.....3.......9........24..........62..........134............277 .0.....9......50.......221.........822.........2669...........8068 .0....31.....296......1922.......10491........50690.........226771 .0...108....1650.....15511......124030.......887491........5870751 .0...366....8666....118857.....1393359.....14787217......144819856 .0..1205...43543....876704....15071233....237386464.....3444870482 .0..3873..211650...6281773...158391708...3703836674....79672440007 .0.12207.1002602..43997218..1627160233..56499013470..1801951754910 .0.37859.4652327.302544617.16409869901.846166990079.40020022178950 ... Some solutions for n=4 and k=4: ..0..1..0..0. .0..1..0..0. .0..1..0..1. .0..0..1..0. .0..1..0..1 ..0..0..1..0. .0..1..1..0. .0..1..0..0. .1..0..1..0. .1..0..1..1 ..1..1..1..1. .0..0..1..1. .1..0..1..1. .0..1..0..1. .1..0..1..1 ..1..0..0..1. .0..0..1..0. .0..0..0..1. .1..0..0..1. .0..1..0..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..198
Crossrefs
Row 1 is A105423(n-2).
Formula
Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = 9*a(n-1) -30*a(n-2) +45*a(n-3) -30*a(n-4) +9*a(n-5) -a(n-6)
k=3: [order 9] for n>10
k=4: [order 24]
k=5: [order 38] for n>39
k=6: [order 96] for n>97
Empirical for row n:
n=1: a(n) = 3*a(n-1) -5*a(n-3) +3*a(n-5) +a(n-6)
n=2: [order 8] for n>10
n=3: [order 24] for n>30
n=4: [order 68] for n>78
Comments