cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A105428 Smallest prime dividing the composite near-repdigit number 133...33 consisting of a 1 followed by n 3's, where n=A105427.

Original entry on oeis.org

7, 31, 67, 151, 23, 13, 7, 157, 163, 107, 17, 13, 7, 89, 170809, 31, 13, 7, 4363363, 251, 42169, 43, 13, 7, 641, 17, 6791, 109, 13, 7, 31, 29, 373, 261382937, 13, 7, 101921, 82647847, 443, 13, 7, 43, 1042402171, 71, 31, 13, 7, 1601, 425519761
Offset: 1

Views

Author

Lekraj Beedassy, Apr 08 2005

Keywords

Crossrefs

Cf. A089018.

Programs

  • Mathematica
    Transpose[FactorInteger[#]][[1,1]]&/@DeleteCases[Table[ FromDigits[ PadRight[{1},n,3]],{n,2,60}],?PrimeQ] (* _Harvey P. Dale, Dec 10 2011 *)
  • PARI
    for(n=1,100,m=10^n+(10^n-1)/3;if(!isprime(m),print1(factorint(m)[1,1]," "))) (Alekseyev)

Extensions

More terms from Max Alekseyev, Apr 11 2005

A051200 Except for initial term, primes of form "n 3's followed by 1".

Original entry on oeis.org

3, 31, 331, 3331, 33331, 333331, 3333331, 33333331, 333333333333333331, 3333333333333333333333333333333333333331, 33333333333333333333333333333333333333333333333331
Offset: 1

Views

Author

Keywords

Comments

"A remarkable pattern that is entirely accidental and leads nowhere" - M. Gardner, referring to the first 8 terms.
a(2)*a(3)*a(4) = 34179391, a Zeisel number (A051015) with coefficients (10,21).
a(2)*a(3)*a(4)*a(5) = 1139233281421, a Zeisel number with coefficients (10,21).
a(2)*a(3)*..*a(6) = 379741768929343351, a Zeisel number with coefficients (10,21).
a(2)*a(3)*..*a(7) = 1265805010367017001532181, a Zeisel number with coefficients (10,21).
a(2)*a(3)*..*a(8) = 42193497392022209194699696424911, a Zeisel number with coefficients (10,21).
Besides first 3, primes of the form (10^n-7)/3, n>1. See A123568. - Vincenzo Librandi, Aug 06 2010
The integer lengths of the terms of the sequence are 1, 2, 3, 4, 5, 6, 7, 8, 18, 40, 50, 60, 78, 101, 151, 319, 382, etc. - Harvey P. Dale, Dec 01 2018

References

  • Martin Gardner, The Last Recreations, Chapter 12: Strong Laws of Small Primes, Springer-Verlag, 1997, pp. 191-205, especially p. 194.
  • W. Sierpiński, 200 Zadan z Elementarnej Teorii Liczb, Warsaw, 1964; Problem 88 [in English: 200 Problems from the Elementary Theory of Numbers]
  • W. Sierpiński, 250 Problems in Elementary Number Theory. New York: American Elsevier, Warsaw, 1970, pp. 8, 56-57.
  • F. Smarandache, Properties of numbers, University of Craiova, 1973

Crossrefs

Programs

  • Mathematica
    Join[{3},Select[Rest[FromDigits/@Table[PadLeft[{1},n,3], {n,50}]], PrimeQ]]  (* Harvey P. Dale, Apr 20 2011 *)

Formula

Union of 3 and A123568.

Extensions

More terms from James Sellers
Cross reference added by Harvey P. Dale, May 21 2014
Showing 1-2 of 2 results.