cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A072172 a(n) = (2*n+1)*5^(2*n+1).

Original entry on oeis.org

5, 375, 15625, 546875, 17578125, 537109375, 15869140625, 457763671875, 12969970703125, 362396240234375, 10013580322265625, 274181365966796875, 7450580596923828125, 201165676116943359375, 5401670932769775390625, 144354999065399169921875
Offset: 0

Views

Author

N. J. A. Sloane, Jun 30 2002

Keywords

Comments

J. Machin (died 1751) used Pi/4 = 4*Sum_{n=0..inf} (-1)^n/((2*n+1)*5^(2*n+1)) - Sum_{n=0..inf} (-1)^n/((2*n+1)*239^(2*n+1)) to calculate Pi to 100 decimal places.

References

  • H. Doerrie, 100 Great Problems of Elementary Mathematics, Dover, NY, 1965, p. 73

Crossrefs

Cf. A072173.
Cf. A157332. - Jaume Oliver Lafont, Mar 03 2009

Programs

  • GAP
    List([0..20], n-> (2*n+1)*5^(2*n+1)); # G. C. Greubel, Aug 26 2019
  • Magma
    [(2*n+1)*5^(2*n+1): n in [0..20]]; // G. C. Greubel, Aug 26 2019
    
  • Maple
    seq((2*n+1)*5^(2*n+1), n=0..20); # G. C. Greubel, Aug 26 2019
  • Mathematica
    Table[(2*n+1)*5^(2*n+1), {n,0,20}] (* G. C. Greubel, Aug 26 2019 *)
  • PARI
    Vec(5*(1+25*x)/(1-25*x)^2 + O(x^20)) \\ Colin Barker, Aug 25 2016
    
  • PARI
    vector(20, n, (2*n-1)*5^(2*n-1) ) \\ G. C. Greubel, Aug 26 2019
    
  • Sage
    [(2*n+1)*5^(2*n+1) for n in (0..20)] # G. C. Greubel, Aug 26 2019
    

Formula

From Colin Barker, Aug 25 2016: (Start)
a(n) = 50*a(n-1) - 625*a(n-2) for n>1.
G.f.: 5*(1+25*x)/(1-25*x)^2.
(End)
From Ilya Gutkovskiy, Aug 25 2016: (Start)
E.g.f.: 5*(1 + 50*x)*exp(25*x).
Sum_{n>=0} 1/a(n) = arctanh(1/5) = 0.2027325540540821...
Sum_{n>=0} (-1)^n/a(n) = arctan(1/5) = A105532 (End)

A195769 Decimal expansion of arctan(5).

Original entry on oeis.org

1, 3, 7, 3, 4, 0, 0, 7, 6, 6, 9, 4, 5, 0, 1, 5, 8, 6, 0, 8, 6, 1, 2, 7, 1, 9, 2, 6, 4, 4, 4, 9, 6, 1, 1, 4, 8, 6, 5, 0, 9, 9, 9, 5, 9, 5, 8, 9, 9, 7, 0, 0, 8, 0, 8, 9, 6, 9, 7, 8, 3, 3, 5, 5, 9, 1, 2, 8, 7, 4, 2, 3, 3, 1, 6, 4, 8, 6, 0, 7, 1, 3, 5, 8, 1, 3, 1, 9, 5, 8, 4, 6, 3, 3, 7, 7, 0, 4, 8, 9
Offset: 1

Views

Author

Clark Kimberling, Sep 24 2011

Keywords

Examples

			arctan(5) = 1.373400766945015860861271926444961148650999...
		

Crossrefs

Programs

  • Mathematica
    r = 5;
    N[ArcTan[r], 100]
    RealDigits[%] (* A195769 *)
    N[ArcCot[r], 100]
    RealDigits[%] (* A105532 *)
    N[ArcSec[r], 100]
    RealDigits[%] (* A195771 *)
    N[ArcCsc[r], 100]
    RealDigits[%] (* A195772 *)
  • PARI
    atan(5) \\ Charles R Greathouse IV, Nov 20 2024

Formula

Equals arcsin(5/sqrt(26)) = arccos(1/sqrt(26)). - Amiram Eldar, Jul 11 2023

A105534 Decimal expansion of arctan 1/239.

Original entry on oeis.org

0, 0, 4, 1, 8, 4, 0, 7, 6, 0, 0, 2, 0, 7, 4, 7, 2, 3, 8, 6, 4, 5, 3, 8, 2, 1, 4, 9, 5, 9, 2, 8, 5, 4, 5, 2, 7, 4, 1, 0, 4, 8, 0, 6, 5, 3, 0, 7, 6, 3, 1, 9, 5, 0, 8, 2, 7, 0, 1, 9, 6, 1, 2, 8, 8, 7, 1, 8, 1, 7, 7, 8, 3, 4, 1, 4, 2, 2, 8, 9, 3, 2, 7, 3, 7, 8, 2, 6, 0, 5, 8, 1, 3, 6, 2, 2, 9, 0, 9, 4, 5, 4, 9, 7, 5
Offset: 0

Views

Author

Bryan Jacobs (bryanjj(AT)gmail.com), Apr 12 2005

Keywords

Comments

Comment from Frank Ellermann, Mar 01 2020: (Start)
8*A195790 - arctan( 1/239 ) - 4*arctan( 1/515 ) = Pi/4 (Meissel, Klingenstierna).
12*arctan( 1/18 ) + 8*arctan( 1/57 ) - 5*arctan( 1/239 ) = Pi/4 (Gauss). (End)

Examples

			0.0041840760020747238645382149...
		

Crossrefs

Cf. A003881 (Pi/4), A021243 (1/239), A105532 (arctan 1/5), A195790 (arccot 10).

Programs

  • Mathematica
    len = 103; n = RealDigits[N[ArcTan[1/239], len]]; PadLeft[First@ n, len + Abs@ Last@ n] (* Michael De Vlieger, Sep 14 2015 *)
    Join[{0,0},RealDigits[ArcTan[1/239],10,120][[1]]] (* Harvey P. Dale, Apr 29 2016 *)
  • PARI
    atan(1/239) \\ Michel Marcus, Sep 24 2014

Formula

4*A105532 - arctan(1/239) = Pi/4 (Machin's formula).
arctan(1/239) = Sum_{n >= 1} i/(n*P(n, 239*i)*P(n-1, 239*i)) = 1/239 - 1/40955996 + 1/8773020079176 - 1/1948832181801673304 + 4/1753293766205137615850855 - ..., where i = sqrt(-1) and P(n, x) denotes the n-th Legendre polynomial. - Peter Bala, Mar 21 2024
Showing 1-3 of 3 results.