cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A105809 Riordan array (1/(1 - x - x^2), x/(1 - x)).

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 3, 4, 3, 1, 5, 7, 7, 4, 1, 8, 12, 14, 11, 5, 1, 13, 20, 26, 25, 16, 6, 1, 21, 33, 46, 51, 41, 22, 7, 1, 34, 54, 79, 97, 92, 63, 29, 8, 1, 55, 88, 133, 176, 189, 155, 92, 37, 9, 1, 89, 143, 221, 309, 365, 344, 247, 129, 46, 10, 1, 144, 232, 364, 530, 674, 709, 591
Offset: 0

Views

Author

Paul Barry, May 04 2005

Keywords

Comments

Previous name was: A Fibonacci-Pascal matrix.
From Wolfdieter Lang, Oct 04 2014: (Start)
In the column k of this triangle (without leading zeros) is the k-fold iterated partial sums of the Fibonacci numbers, starting with 1. A000045(n+1), A000071(n+3), A001924(n+1), A014162(n+1), A014166(n+1), ..., n >= 0. See the Riordan property.
For a combinatorial interpretation of these iterated partial sums see the H. Belbachir and A. Belkhir link. There table 1 shows in the rows these columns. In their notation (with r = k) f^(k)(n) = T(k, n+k).
The A-sequence of this Riordan triangle is [1, 1] (see the recurrence for T(n, k), k >= 1, given in the formula section). The Z-sequence is A165326 = [1, repeat(1, -1)]. See the W. Lang link under A006232 for Riordan A- and Z-sequences. (End)

Examples

			The triangle T(n,k) begins:
n\k   0   1   2    3    4    5    6    7    8   9  10 11 12 13 ...
0:    1
1:    1   1
2:    2   2   1
3:    3   4   3    1
4:    5   7   7    4    1
5:    8  12  14   11    5    1
6:   13  20  26   25   16    6    1
7:   21  33  46   51   41   22    7    1
8:   34  54  79   97   92   63   29    8    1
9:   55  88 133  176  189  155   92   37    9   1
10:  89 143 221  309  365  344  247  129   46  10   1
11: 144 232 364  530  674  709  591  376  175  56  11  1
12: 233 376 596  894 1204 1383 1300  967  551 231  67 12  1
13: 377 609 972 1490 2098 2587 2683 2267 1518 782 298 79 13  1
... reformatted and extended - _Wolfdieter Lang_, Oct 03 2014
------------------------------------------------------------------
Recurrence from Z-sequence (see a comment above): 8 = T(0,5) = (+1)*5 + (+1)*7 + (-1)*7 + (+1)*4 + (-1)*1 = 8. - _Wolfdieter Lang_, Oct 04 2014
		

Crossrefs

Cf. A165326 (Z-sequence), A027934 (row sums), A010049(n+1) (antidiagonal sums), A212804 (alternating row sums), inverse is A105810.
Some other Fibonacci-Pascal triangles: A027926, A036355, A037027, A074829, A109906, A111006, A114197, A162741, A228074.

Programs

  • Haskell
    a105809 n k = a105809_tabl !! n !! k
    a105809_row n = a105809_tabl !! n
    a105809_tabl = map fst $ iterate
       (\(u:_, vs) -> (vs, zipWith (+) ([u] ++ vs) (vs ++ [0]))) ([1], [1,1])
    -- Reinhard Zumkeller, Aug 15 2013
  • Maple
    T := (n,k) -> `if`(n=0,1,binomial(n,k)*hypergeom([1,k/2-n/2,k/2-n/2+1/2], [k+1,-n], -4)); for n from 0 to 13 do seq(simplify(T(n,k)),k=0..n) od; # Peter Luschny, Oct 10 2014
  • Mathematica
    T[n_, k_] := Sum[Binomial[n-j, k+j], {j, 0, n}]; Table[T[n, k], {n, 0, 11}, {k, 0, n}] (* Jean-François Alcover, Jun 11 2019 *)

Formula

Riordan array (1/(1-x-x^2), x/(1-x)).
Triangle T(n, k) = Sum_{j=0..n} binomial(n-j, k+j); T(n, 0) = A000045(n+1);
T(n, m) = T(n-1, m-1) + T(n-1, m).
T(n, k) = Sum_{j=0..n} binomial(j, n+k-j). - Paul Barry, Oct 23 2006
G.f. of row polynomials Sum_{k=0..n} T(n, k)*x^k is (1 - z)/((1 - z - z^2)*(1 - (1 + x)*z)) (Riordan property). - Wolfdieter Lang, Oct 04 2014
T(n, k) = binomial(n, k)*hypergeom([1, k/2 - n/2, k/2 - n/2 + 1/2],[k + 1, -n], -4) for n > 0. - Peter Luschny, Oct 10 2014
From Wolfdieter Lang, Feb 13 2025: (Start)
Array A(k, n) = Sum_{j=0..n} F(j+1)*binomial(k-1+n-j, k-1), k >= 0, n >= 0, with F = A000045, (from Riordan triangle k-th convolution in columns without leading 0s).
A(k, n) = F(n+1+2*k) - Sum_{j=0..k-1} F(2*(k-j)-1) * binomial(n+1+j, j), (from iteration of partial sums).
Triangle T(n, k) = A(k, n-k) = Sum_{j=k..n} F(n-j+1) * binomial(j-1, k-1), 0 <= k <= n.
T(n, k) = F(n+1+k) - Sum_{j=0..k-1} F(2*(k-j)-1) * binomial(n - (k-1-j), j). (End)
T(n, k) = A027926(n, n+k), for 0 <= k <= n. - Wolfdieter Lang, Mar 08 2025

Extensions

Use first formula as a more descriptive name, Joerg Arndt, Jun 08 2021

A105811 Expansion of g.f. (1+x-x^2)/(1+x)^2.

Original entry on oeis.org

1, -1, 0, 1, -2, 3, -4, 5, -6, 7, -8, 9, -10, 11, -12, 13, -14, 15, -16, 17, -18, 19, -20, 21, -22, 23, -24, 25, -26, 27, -28, 29, -30, 31, -32, 33, -34, 35, -36, 37, -38, 39, -40, 41, -42, 43, -44, 45, -46, 47, -48, 49, -50, 51, -52, 53, -54, 55, -56, 57, -58, 59, -60, 61, -62, 63, -64, 65
Offset: 0

Views

Author

Paul Barry, May 04 2005

Keywords

Comments

First column of number triangle A105810.

Crossrefs

Cf. A105810.

Programs

  • Mathematica
    CoefficientList[Series[(1+x-x^2)/(1+x)^2,{x,0,70}],x] (* or *) LinearRecurrence[ {-2,-1},{1,-1,0},70] (* Harvey P. Dale, Jun 16 2016 *)
  • PARI
    a(n)=-0^n-(-1)^n*(n-2) \\ Charles R Greathouse IV, Sep 02 2015

Formula

a(n) = -0^n-(-1)^n*(n-2).
E.g.f.: exp(-x)*(2 + x) - 1. - Stefano Spezia, Dec 29 2024

A105812 Expansion of (1+x-x^2)/(1+x).

Original entry on oeis.org

1, 0, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1
Offset: 0

Views

Author

Paul Barry, May 04 2005

Keywords

Comments

Row sums of number triangle A105810.

Crossrefs

Programs

Formula

a(n) = -(-1)^n-binomial(1, n)+3*binomial(0, n).
a(n) = A033999(n-1), n>1. - R. J. Mathar, Aug 28 2008
E.g.f.: 2 - x - exp(-x). - Alejandro J. Becerra Jr., Feb 17 2021

A248155 Expansion of (1 + x - x^2)/((1 + x)*(1 + 2*x)).

Original entry on oeis.org

1, -2, 3, -5, 9, -17, 33, -65, 129, -257, 513, -1025, 2049, -4097, 8193, -16385, 32769, -65537, 131073, -262145, 524289, -1048577, 2097153, -4194305, 8388609, -16777217, 33554433, -67108865, 134217729, -268435457, 536870913
Offset: 0

Views

Author

Wolfdieter Lang, Oct 04 2014

Keywords

Comments

Alternating row sums of A105810.
Riordan triangle ((1 + x - x^2)/(1 + x)^2, x/(1 + x)).

Crossrefs

Programs

  • Magma
    A248155:= func< n | n eq 0 select 1 else (-1)^n*(2^(n-1) + 1) >;
    [A248155(n): n in [0..50]]; // G. C. Greubel, May 30 2025
    
  • Mathematica
    Table[((-1)^n*(2^n+2) - Boole[n==0])/2, {n,0,50}] (* G. C. Greubel, May 30 2025 *)
  • PARI
    Vec((1 + x - x^2)/((1 + x)*(1 + 2*x)) + O (x^40)) \\ Michel Marcus, Oct 11 2014
    
  • Python
    def A248155(n): return ((-1)**n*(2 + 2**n) - int(n==0))//2
    print([A248155(n) for n in range(51)]) # G. C. Greubel, May 30 2025

Formula

O.g.f.: (1+x-x^2)/((1+x)*(1+2*x)).
a(n) = (3/2)*b(n) + (5/2)*b(n-1), n>=1, a(0) = 1, with b(n) = A225883(n+1).
a(n) = (-1)^n*(1 + 2^(n-1)), n>=1, a(0) = 1.
E.g.f.: 2*exp(-x)*(cosh(x/2))^2 - 1. - G. C. Greubel, May 30 2025
Showing 1-4 of 4 results.