cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A105938 a(n) = binomial(n+2,2)*binomial(n+5,2).

Original entry on oeis.org

10, 45, 126, 280, 540, 945, 1540, 2376, 3510, 5005, 6930, 9360, 12376, 16065, 20520, 25840, 32130, 39501, 48070, 57960, 69300, 82225, 96876, 113400, 131950, 152685, 175770, 201376, 229680, 260865, 295120, 332640, 373626, 418285, 466830, 519480, 576460
Offset: 0

Views

Author

Zerinvary Lajos, Apr 27 2005

Keywords

Examples

			If n=0 then C(0+2,0)*C(0+5,2) = C(2,0)*C(5,2) = 1*10 = 10.
If n=9 then C(9+2,9)*C(9+5,2) = C(11,9)*C(14,2) = 55*91 = 5005.
		

Crossrefs

Subsequence of A085780.

Programs

  • Magma
    A105938:= func< n | 30*Binomial(n+5,5)/(n+3) >;
    [A105938(n): n in [0..40]]; // G. C. Greubel, Mar 11 2025
    
  • Maple
    a:= n-> binomial(n+2,n)*binomial(n+5,2):
    seq(a(n), n=0..40);  # Alois P. Heinz, Oct 16 2008
  • Mathematica
    Table[n(n+1)(n+3)(n+4)/4, {n, 100}] (* Vladimir Joseph Stephan Orlovsky, Jun 26 2011 *)
    Table[Binomial[n + 2, n] Binomial[n + 5, 2], {n, 0, 40}] (* or *) LinearRecurrence[{5, -10, 10, -5, 1}, {10, 45, 126, 280, 540}, 40] (* Harvey P. Dale, Sep 05 2013 *)
  • SageMath
    def A105938(n): return 30*binomial(n+5,5)//(n+3)
    print([A105938(n) for n in range(41)]) # G. C. Greubel, Mar 11 2025

Formula

G.f.: (10 - 5*x + x^2)/(1-x)^5. - Alois P. Heinz, Oct 16 2008
a(0)=10, a(1)=45, a(2)=126, a(3)=280, a(4)=540; for n>4, a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). - Harvey P. Dale, Sep 05 2013
a(n) = A000217(n+1)*A000217(n+4). - R. J. Mathar, Nov 29 2015
a(n) = A000096(n+1)*A000096(n+2). - Bruno Berselli, Sep 21 2016
From Amiram Eldar, Jan 06 2021: (Start)
Sum_{n>=0} 1/a(n) = 5/36.
Sum_{n>=0} (-1)^n/a(n) = 1/12. (End)
From G. C. Greubel, Mar 11 2025: (Start)
a(n) = 30*A000389(n+5)/(n+3).
E.g.f.: (1/4)*(40 + 140*x + 92*x^2 + 18*x^3 + x^4)*exp(x). (End)