cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A208270 Primes containing a digit 1.

Original entry on oeis.org

11, 13, 17, 19, 31, 41, 61, 71, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 241, 251, 271, 281, 311, 313, 317, 331, 401, 419, 421, 431, 461, 491, 521, 541, 571, 601, 613, 617, 619, 631, 641, 661
Offset: 1

Views

Author

Jaroslav Krizek, Mar 04 2012

Keywords

Comments

Subsequence of A011531, A062634, A092911 and A092912.
Supersequence of A106101, A045707 and A030430.
Complement of A208271 with respect to A011531.

Crossrefs

Cf. A208271 (nonprimes containing a digit 1), A011531 (numbers containing a digit 1).
Complement of A038603 in A000040. - M. F. Hasler, Mar 05 2012

Programs

  • Magma
    [p: p in PrimesUpTo(400) | 1 in Intseq(p)]; // Vincenzo Librandi, Apr 29 2019
  • Mathematica
    Select[Prime[Range[124]], MemberQ[IntegerDigits[#], 1] &](* Jayanta Basu, Apr 01 2013 *)
    Select[Prime[Range[200]],DigitCount[#,10,1]>0&] (* Harvey P. Dale, Dec 15 2020 *)
  • PARI
    forprime(p=2,1e3,s=vecsort(eval(Vec(Str(p))),,8);if(s[1]==1||(s[1]==0&&s[2]==1),print1(p", "))) \\ Charles R Greathouse IV, Mar 04 2012
    
  • PARI
    is_A208270(n)=isprime(n)&setsearch(Set(Vec(Str(n))),1) \\ M. F. Hasler, Mar 05 2012
    

Formula

a(n) ~ n log n since the sequence contains almost all primes. - Charles R Greathouse IV, Mar 04 2012

A284062 Numbers whose smallest decimal digit is 1.

Original entry on oeis.org

1, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 31, 41, 51, 61, 71, 81, 91, 111, 112, 113, 114, 115, 116, 117, 118, 119, 121, 122, 123, 124, 125, 126, 127, 128, 129, 131, 132, 133, 134, 135, 136, 137, 138, 139, 141, 142, 143, 144, 145, 146, 147, 148, 149, 151, 152
Offset: 1

Views

Author

Jaroslav Krizek, Mar 19 2017

Keywords

Comments

Numbers k such that A054054(k) = 1.
Prime terms are in A106101.

Crossrefs

Cf. Sequences of numbers whose smallest decimal digit is k (for k = 0..9): A011540 (k = 0), this sequence (k = 1), A284063 (k = 2), A284064 (k = 3), A284065 (k = 4), A284066 (k = 5), A284067 (k = 6), A284068 (k = 7), A284069 (k = 8), A002283 (k = 9).

Programs

  • Magma
    [n: n in [1..100000] | Minimum(Setseq(Set(Sort(&cat[Intseq(n)])))) eq 1]
    
  • Mathematica
    Select[Range[300], Min[IntegerDigits[#]]==1 &] (* Indranil Ghosh, Mar 19 2017 *)
  • PARI
    for(n=1, 300, if(vecmin(digits(n))==1, print1(n,", "))) \\ Indranil Ghosh, Mar 19 2017
    
  • Python
    from sympy.ntheory.factor_ import digits
    print([n for n in range(1, 301) if min(digits(n)[1:])==1]) # Indranil Ghosh, Mar 19 2017

A206159 Numbers needing at most two digits to write all positive divisors in decimal representation.

Original entry on oeis.org

1, 2, 3, 5, 7, 11, 13, 17, 19, 22, 31, 33, 41, 55, 61, 71, 77, 101, 113, 121, 131, 151, 181, 191, 199, 211, 311, 313, 331, 661, 811, 881, 911, 919, 991, 1111, 1117, 1151, 1171, 1181, 1511, 1777, 1811, 1999, 2111, 2221, 3313, 3331, 4111, 4441, 6661, 7177, 7717, 8111, 9199, 10111, 11113
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 05 2012

Keywords

Comments

The terms of A203897 having all divisors in A020449 (in particular, the first 1022 terms) are a subsequence. - M. F. Hasler, May 02 2022
Since 1 and the term itself are divisors, one must only check repdigits and those containing only 1 and another digit. - Michael S. Branicky, May 02 2022

Crossrefs

Cf. A203897 (an "almost subsequence"), A020449 (primes with only digits 0 & 1), A095048 (number of distinct digits in divisors(n)).

Programs

  • Mathematica
    Select[Range[12000],Length[Union[Flatten[IntegerDigits/@Divisors[#]]]]<3&] (* Harvey P. Dale, May 03 2022 *)
  • PARI
    select( {is_A206159(n)=#Set(concat([digits(d)|d<-divisors(n)]))<3}, [1..10^4]) \\ M. F. Hasler, May 02 2022
  • Python
    from sympy import divisors
    def ok(n):
        digits_used = set()
        for d in divisors(n, generator=True):
            digits_used |= set(str(d))
            if len(digits_used) > 2: return False
        return True
    print([k for k in range(1, 9000) if ok(k)]) # Michael S. Branicky, May 02 2022
    

Formula

A095048(a(n)) <= 2.

Extensions

Terms corrected by Harvey P. Dale, May 02 2022
Edited by N. J. A. Sloane, May 02 2022
Showing 1-3 of 3 results.