cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A239634 Initial digits of semiprimes in decimal representation.

Original entry on oeis.org

4, 6, 9, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 5, 5, 5, 5, 6, 6, 6, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 23 2014

Keywords

Comments

a(n) = A000030(A001358(n)).

Crossrefs

Cf. A239639 (run lengths), A106146 (last digits).

Programs

  • Haskell
    a239634 = a000030 . a001358
  • Mathematica
    First[IntegerDigits[#]]&/@Select[Range[300],PrimeOmega[#]==2&] (* Harvey P. Dale, Jul 24 2017 *)

A253721 Triprimes modulo 10.

Original entry on oeis.org

8, 2, 8, 0, 7, 8, 0, 2, 4, 5, 0, 2, 3, 6, 8, 0, 5, 6, 8, 2, 8, 9, 2, 5, 0, 4, 6, 7, 4, 5, 0, 8, 7, 8, 3, 4, 4, 5, 0, 1, 2, 4, 5, 2, 6, 8, 0, 5, 7, 2, 2, 0, 1, 6, 8, 2, 4, 5, 6, 5, 8, 1, 6, 8, 3, 5, 9, 2, 4, 5, 6, 0, 2, 0, 6, 8, 2, 5, 2, 3, 8, 3, 5, 4, 6, 7
Offset: 1

Views

Author

Wesley Ivan Hurt, May 02 2015

Keywords

Comments

Last digit of triprimes (A014612).

Crossrefs

Cf. A010879 (final digit of n), A014612 (triprimes).
Cf. A007652 (primes mod 10), A106146 (semiprimes mod 10).
Cf. A255646 (subsequence).

Programs

  • Haskell
    a253721 = flip mod 10 . a014612  -- Reinhard Zumkeller, May 05 2015
    
  • Maple
    with(numtheory): A253721:=n->`if`(bigomega(n) = 3, n mod 10, NULL): seq(A253721(n), n=1..500);
  • Mathematica
    Mod[#, 10] & /@ Select[Range[500], PrimeOmega[#] == 3 &]
  • PARI
    do(x)=my(v=List(), t); forprime(p=2, x\4, forprime(q=2, min(x\(2*p), p), t=p*q; forprime(r=2, min(x\t, q), listput(v, t*r)))); Set(v)%10 \\ Charles R Greathouse IV, Aug 30 2017
    
  • Python
    from math import isqrt
    from sympy import primepi, primerange, integer_nthroot
    def A253721(n):
        def f(x): return int(n+x-sum(primepi(x//(k*m))-b for a,k in enumerate(primerange(integer_nthroot(x,3)[0]+1)) for b,m in enumerate(primerange(k,isqrt(x//k)+1),a)))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return m%10 # Chai Wah Wu, Aug 17 2024

Formula

a(n) = A010879(A014612(n)). - Michel Marcus, May 03 2015

A176146 a(n) = n-th-semiprime without last digit.

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 5, 5, 5, 5, 6, 6, 6, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 10, 11, 11, 11, 11, 12, 12, 12, 12, 13, 13, 14, 14, 14, 14, 14, 15, 15, 15, 16, 16, 16, 17, 17, 18, 18, 18, 19, 20, 20, 20, 20, 20, 20, 21, 21, 21, 21, 21, 21, 22, 22, 23, 23, 24, 24, 25
Offset: 1

Views

Author

Giovanni Teofilatto, Apr 10 2010

Keywords

Comments

Sequence A131109 shows that a(n+1)-a(n) can be larger than 1. [From T. D. Noe, Apr 12 2010]
The differences exceed 1 for the first time between a(186) = 59 and a(187) = 61. [R. J. Mathar, Apr 12 2010]

Crossrefs

Showing 1-3 of 3 results.