A106264 Diagonal sums of number triangle A106262.
1, 0, 1, 2, 2, 4, 2, 4, 6, 7, 7, 8, 14, 10, 13, 12, 15, 19, 22, 22, 23, 25, 25, 44, 44, 40, 28, 50, 44, 54, 52, 55, 50, 66, 53, 72, 83, 80, 58, 73, 82, 110, 114, 123, 127, 113, 91, 112, 158, 137, 117, 122, 152, 135, 166, 160, 211, 206, 171, 219, 240, 201, 188, 194, 236
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Crossrefs
Cf. A106262.
Programs
-
Magma
[(&+[2^(n-2*k) mod (k+2): k in [0..Floor(n/2)]]): n in [0..80]]; // G. C. Greubel, Jan 10 2023
-
Mathematica
Table[Sum[Mod[2^(n-2*k), k+2], {k,0,Floor[n/2]}], {n,0,80}] (* G. C. Greubel, Jan 10 2023 *)
-
SageMath
def A106264(n): return sum( (2^(n-2*k)%(k+2)) for k in range(n//2+1) ) [A106264(n) for n in range(81)] # G. C. Greubel, Jan 10 2023
Formula
a(n) = Sum_{k=0..floor(n/2)} ( 2^(n-2*k) mod (k+2) ).
Comments